Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 100189 by Dwaipayan Shikari last updated on 25/Jun/20

∫tan^i xdx

$$\int{tan}^{{i}} {xdx} \\ $$

Answered by maths mind last updated on 25/Jun/20

=∫(u^i /((1+u2)))du  =∫Σ(−1)^k u^(2k+i) du  =Σ(((−1)^k u^(2k+i+1) )/(2k+i+1))du  =u^(i+1) Σ(((−u^2 )^k )/(k!)).((k!)/(2(((i+1)/2)+k)))+c  =u^(i+1) ((1/(i+1))+Σ_(k≥1) ((k!.)/(2(k+((i+1)/2)))).(((−u^2 )^k )/(k!)))+c  =(u^(i+1) /(i+1))(1+Σ_(k≥1) ((k!.(((i+1)/2)))/((k+((i+1)/2)))).(((−u^2 )^k )/(k!)))+c  =(u^(i+1) /(i+1))(1+Σ_(k≥1) (((1)_k .(((i+1)/2))_k )/((((i+3)/2))_k )).(((−u^2 )^k )/(k!)))+c  =(u^(i+1) /(i+1))  _2 F_1 (1,((i+1)/2);((i+3)/2);−u^2 )+c  u=tan(x)  2F_1 (a,b;c;x)   hyper geometric function  (a_n )=Π_(k=0) ^(n−1) (a+k),

$$=\int\frac{{u}^{{i}} }{\left(\mathrm{1}+{u}\mathrm{2}\right)}{du} \\ $$$$=\int\Sigma\left(−\mathrm{1}\right)^{{k}} {u}^{\mathrm{2}{k}+{i}} {du} \\ $$$$=\Sigma\frac{\left(−\mathrm{1}\right)^{{k}} {u}^{\mathrm{2}{k}+{i}+\mathrm{1}} }{\mathrm{2}{k}+{i}+\mathrm{1}}{du} \\ $$$$={u}^{{i}+\mathrm{1}} \Sigma\frac{\left(−{u}^{\mathrm{2}} \right)^{{k}} }{{k}!}.\frac{{k}!}{\mathrm{2}\left(\frac{{i}+\mathrm{1}}{\mathrm{2}}+{k}\right)}+{c} \\ $$$$={u}^{{i}+\mathrm{1}} \left(\frac{\mathrm{1}}{{i}+\mathrm{1}}+\underset{{k}\geqslant\mathrm{1}} {\sum}\frac{{k}!.}{\mathrm{2}\left({k}+\frac{{i}+\mathrm{1}}{\mathrm{2}}\right)}.\frac{\left(−{u}^{\mathrm{2}} \right)^{{k}} }{{k}!}\right)+{c} \\ $$$$=\frac{{u}^{{i}+\mathrm{1}} }{{i}+\mathrm{1}}\left(\mathrm{1}+\underset{{k}\geqslant\mathrm{1}} {\sum}\frac{{k}!.\left(\frac{{i}+\mathrm{1}}{\mathrm{2}}\right)}{\left({k}+\frac{{i}+\mathrm{1}}{\mathrm{2}}\right)}.\frac{\left(−{u}^{\mathrm{2}} \right)^{{k}} }{{k}!}\right)+{c} \\ $$$$=\frac{{u}^{{i}+\mathrm{1}} }{{i}+\mathrm{1}}\left(\mathrm{1}+\underset{{k}\geqslant\mathrm{1}} {\sum}\frac{\left(\mathrm{1}\right)_{{k}} .\left(\frac{{i}+\mathrm{1}}{\mathrm{2}}\right)_{{k}} }{\left(\frac{{i}+\mathrm{3}}{\mathrm{2}}\right)_{{k}} }.\frac{\left(−{u}^{\mathrm{2}} \right)^{{k}} }{{k}!}\right)+{c} \\ $$$$=\frac{{u}^{{i}+\mathrm{1}} }{{i}+\mathrm{1}}\:\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\mathrm{1},\frac{{i}+\mathrm{1}}{\mathrm{2}};\frac{{i}+\mathrm{3}}{\mathrm{2}};−{u}^{\mathrm{2}} \right)+{c} \\ $$$${u}={tan}\left({x}\right) \\ $$$$\mathrm{2}{F}_{\mathrm{1}} \left({a},{b};{c};{x}\right)\:\:\:{hyper}\:{geometric}\:{function} \\ $$$$\left({a}_{{n}} \right)=\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left({a}+{k}\right), \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com