Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 215527 by alephnull last updated on 09/Jan/25

t_(33) ′ab+t_(00) ′ab=?    Clearing up defintions:  t_(33) ′a=(a−(√(36)))×3  t_(00) ′a=(a−(√(36)))×0  t′a=a−(√(36))  t′a= “transformation” of a

$${t}_{\mathrm{33}} '{ab}+{t}_{\mathrm{00}} '{ab}=? \\ $$$$ \\ $$$$\mathrm{Clearing}\:\mathrm{up}\:\mathrm{defintions}: \\ $$$${t}_{\mathrm{33}} '{a}=\left({a}−\sqrt{\mathrm{36}}\right)×\mathrm{3} \\ $$$${t}_{\mathrm{00}} '{a}=\left({a}−\sqrt{\mathrm{36}}\right)×\mathrm{0} \\ $$$${t}'{a}={a}−\sqrt{\mathrm{36}} \\ $$$${t}'{a}=\:``\mathrm{transformation}''\:\mathrm{of}\:{a} \\ $$

Answered by MrGaster last updated on 10/Jan/25

t_(33) ^� a=(a−6)×3=3a−18  t_(00) ^� a=(a−6)×0=0  t′a=a−6  ⇒t′_(33) ab+t′_(00) ab=(3a−18)b+0  =3ab−18b  ⇒t′_(33) ab+t′_(00) ab=3ab−18b✓

$$\acute {{t}}_{\mathrm{33}} {a}=\left({a}−\mathrm{6}\right)×\mathrm{3}=\mathrm{3}{a}−\mathrm{18} \\ $$$$\acute {{t}}_{\mathrm{00}} {a}=\left({a}−\mathrm{6}\right)×\mathrm{0}=\mathrm{0} \\ $$$${t}'{a}={a}−\mathrm{6} \\ $$$$\Rightarrow{t}'_{\mathrm{33}} {ab}+{t}'_{\mathrm{00}} {ab}=\left(\mathrm{3}{a}−\mathrm{18}\right){b}+\mathrm{0} \\ $$$$=\mathrm{3}{ab}−\mathrm{18}{b} \\ $$$$\Rightarrow{t}'_{\mathrm{33}} {ab}+{t}'_{\mathrm{00}} {ab}=\mathrm{3}{ab}−\mathrm{18}{b}\checkmark \\ $$

Commented by alephnull last updated on 10/Jan/25

thank you sir what would it be with the notation of t′?

$${thank}\:{you}\:{sir}\:{what}\:{would}\:{it}\:{be}\:{with}\:{the}\:{notation}\:{of}\:{t}'? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com