Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 64354 by Rio Michael last updated on 17/Jul/19

some one write the statement   a ≡−a(mod m)   show that this statement is not generally true.! giving a counter  example

$${some}\:{one}\:{write}\:{the}\:{statement} \\ $$$$\:{a}\:\equiv−{a}\left({mod}\:{m}\right)\: \\ $$$${show}\:{that}\:{this}\:{statement}\:{is}\:{not}\:{generally}\:{true}.!\:{giving}\:{a}\:{counter} \\ $$$${example} \\ $$

Answered by MJS last updated on 17/Jul/19

49÷11=  we′re looking for the greatest n with 11n≤49 ⇒  ⇒ n=4  49÷11=4  multiplicating “backwards”  4×11=44  subtracting      49÷11=4  −44  ===         5 remains    now do the same here:  (−49)÷11=  we′re looking for the greatest n with 11n≤(−49) ⇒  ⇒ n=(−5)  (−49)÷11=(−5)  multiplicating “backwards”  (−5)×11=(−55)  subtracting       (−49)÷11=(−5)  −(−55)  =====               6 remains    but      49÷(−11)=(−4)  −44  ===         5 remains    ⇒ for division with remainder:  (−a):b≠a:(−b)    remainders are always ≥0 here  but some people use different logic which  is also ok. you have to follow the same  logic throughout your work

$$\mathrm{49}\boldsymbol{\div}\mathrm{11}= \\ $$$$\mathrm{we}'\mathrm{re}\:\mathrm{looking}\:\mathrm{for}\:\mathrm{the}\:\mathrm{greatest}\:{n}\:\mathrm{with}\:\mathrm{11}{n}\leqslant\mathrm{49}\:\Rightarrow \\ $$$$\Rightarrow\:{n}=\mathrm{4} \\ $$$$\mathrm{49}\boldsymbol{\div}\mathrm{11}=\mathrm{4} \\ $$$$\mathrm{multiplicating}\:``\mathrm{backwards}'' \\ $$$$\mathrm{4}×\mathrm{11}=\mathrm{44} \\ $$$$\mathrm{subtracting} \\ $$$$\:\:\:\:\mathrm{49}\boldsymbol{\div}\mathrm{11}=\mathrm{4} \\ $$$$−\mathrm{44} \\ $$$$=== \\ $$$$\:\:\:\:\:\:\:\mathrm{5}\:\mathrm{remains} \\ $$$$ \\ $$$$\mathrm{now}\:\mathrm{do}\:\mathrm{the}\:\mathrm{same}\:\mathrm{here}: \\ $$$$\left(−\mathrm{49}\right)\boldsymbol{\div}\mathrm{11}= \\ $$$$\mathrm{we}'\mathrm{re}\:\mathrm{looking}\:\mathrm{for}\:\mathrm{the}\:\mathrm{greatest}\:{n}\:\mathrm{with}\:\mathrm{11}{n}\leqslant\left(−\mathrm{49}\right)\:\Rightarrow \\ $$$$\Rightarrow\:{n}=\left(−\mathrm{5}\right) \\ $$$$\left(−\mathrm{49}\right)\boldsymbol{\div}\mathrm{11}=\left(−\mathrm{5}\right) \\ $$$$\mathrm{multiplicating}\:``\mathrm{backwards}'' \\ $$$$\left(−\mathrm{5}\right)×\mathrm{11}=\left(−\mathrm{55}\right) \\ $$$$\mathrm{subtracting} \\ $$$$\:\:\:\:\:\left(−\mathrm{49}\right)\boldsymbol{\div}\mathrm{11}=\left(−\mathrm{5}\right) \\ $$$$−\left(−\mathrm{55}\right) \\ $$$$===== \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{6}\:\mathrm{remains} \\ $$$$ \\ $$$$\mathrm{but} \\ $$$$\:\:\:\:\mathrm{49}\boldsymbol{\div}\left(−\mathrm{11}\right)=\left(−\mathrm{4}\right) \\ $$$$−\mathrm{44} \\ $$$$=== \\ $$$$\:\:\:\:\:\:\:\mathrm{5}\:\mathrm{remains} \\ $$$$ \\ $$$$\Rightarrow\:\mathrm{for}\:\mathrm{division}\:\mathrm{with}\:\mathrm{remainder}: \\ $$$$\left(−{a}\right):{b}\neq{a}:\left(−{b}\right) \\ $$$$ \\ $$$$\mathrm{remainders}\:\mathrm{are}\:\mathrm{always}\:\geqslant\mathrm{0}\:\mathrm{here} \\ $$$$\mathrm{but}\:\mathrm{some}\:\mathrm{people}\:\mathrm{use}\:\mathrm{different}\:\mathrm{logic}\:\mathrm{which} \\ $$$$\mathrm{is}\:\mathrm{also}\:\mathrm{ok}.\:\mathrm{you}\:\mathrm{have}\:\mathrm{to}\:\mathrm{follow}\:\mathrm{the}\:\mathrm{same} \\ $$$$\mathrm{logic}\:\mathrm{throughout}\:\mathrm{your}\:\mathrm{work} \\ $$

Commented by Rio Michael last updated on 17/Jul/19

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Commented by Rio Michael last updated on 17/Jul/19

if i decide to take the counter example   7≡−7 (mod 6)  and  6 ∤ 14 so  its a wrong statement?

$${if}\:{i}\:{decide}\:{to}\:{take}\:{the}\:{counter}\:{example} \\ $$$$\:\mathrm{7}\equiv−\mathrm{7}\:\left({mod}\:\mathrm{6}\right) \\ $$$${and}\:\:\mathrm{6}\:\nmid\:\mathrm{14}\:{so}\:\:{its}\:{a}\:{wrong}\:{statement}? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com