Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 97626 by mathmax by abdo last updated on 08/Jun/20

solve y^(′′)  −2y^′  +y  =x^2  with y^′ (0) =y(0) =−1

$$\mathrm{solve}\:\mathrm{y}^{''} \:−\mathrm{2y}^{'} \:+\mathrm{y}\:\:=\mathrm{x}^{\mathrm{2}} \:\mathrm{with}\:\mathrm{y}^{'} \left(\mathrm{0}\right)\:=\mathrm{y}\left(\mathrm{0}\right)\:=−\mathrm{1} \\ $$

Commented by bemath last updated on 09/Jun/20

λ^2 −2λ+1=0  λ=1,1 ⇒y_h  = Ae^x  + Bxe^x   particular y_p =ax^2 +bx+c  y′=2ax+b , y′′=2a  ⇒2a−4ax−2b+ax^2 +bx+c = x^2   ⇒a=1 , b=4 , c = 2b−2a=6  y_p = x^2 +4x+6   generall solution   y=Ae^x +Bxe^x +x^2 +4x+6  y(0) = −1=A+6 , A = −7  y′= −7e^x +Be^x +Bxe^x +2x+4  y′(0)=−1=−7+B+4  B=2 ⇔∴y_c  = −7e^x +2xe^x +x^2 +4x+6

$$\lambda^{\mathrm{2}} −\mathrm{2}\lambda+\mathrm{1}=\mathrm{0} \\ $$$$\lambda=\mathrm{1},\mathrm{1}\:\Rightarrow\mathrm{y}_{\mathrm{h}} \:=\:\mathrm{Ae}^{\mathrm{x}} \:+\:\mathrm{Bxe}^{\mathrm{x}} \\ $$$$\mathrm{particular}\:\mathrm{y}_{\mathrm{p}} =\mathrm{ax}^{\mathrm{2}} +\mathrm{bx}+\mathrm{c} \\ $$$$\mathrm{y}'=\mathrm{2ax}+\mathrm{b}\:,\:\mathrm{y}''=\mathrm{2a} \\ $$$$\Rightarrow\mathrm{2a}−\mathrm{4ax}−\mathrm{2b}+\mathrm{ax}^{\mathrm{2}} +\mathrm{bx}+\mathrm{c}\:=\:\mathrm{x}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{a}=\mathrm{1}\:,\:\mathrm{b}=\mathrm{4}\:,\:\mathrm{c}\:=\:\mathrm{2b}−\mathrm{2a}=\mathrm{6} \\ $$$$\mathrm{y}_{\mathrm{p}} =\:\mathrm{x}^{\mathrm{2}} +\mathrm{4x}+\mathrm{6}\: \\ $$$$\mathrm{generall}\:\mathrm{solution}\: \\ $$$$\mathrm{y}=\mathrm{Ae}^{\mathrm{x}} +\mathrm{Bxe}^{\mathrm{x}} +\mathrm{x}^{\mathrm{2}} +\mathrm{4x}+\mathrm{6} \\ $$$$\mathrm{y}\left(\mathrm{0}\right)\:=\:−\mathrm{1}=\mathrm{A}+\mathrm{6}\:,\:\mathrm{A}\:=\:−\mathrm{7} \\ $$$$\mathrm{y}'=\:−\mathrm{7e}^{\mathrm{x}} +\mathrm{Be}^{\mathrm{x}} +\mathrm{Bxe}^{\mathrm{x}} +\mathrm{2x}+\mathrm{4} \\ $$$$\mathrm{y}'\left(\mathrm{0}\right)=−\mathrm{1}=−\mathrm{7}+\mathrm{B}+\mathrm{4} \\ $$$$\mathrm{B}=\mathrm{2}\:\Leftrightarrow\therefore\mathrm{y}_{\mathrm{c}} \:=\:−\mathrm{7e}^{\mathrm{x}} +\mathrm{2xe}^{\mathrm{x}} +\mathrm{x}^{\mathrm{2}} +\mathrm{4x}+\mathrm{6} \\ $$

Commented by bobhans last updated on 09/Jun/20

good

$$\mathrm{good} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com