Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 105080 by 175mohamed last updated on 25/Jul/20

solve:   x((x^2 −1)!) = 5((x−1)!)

$${solve}: \\ $$$$\:{x}\left(\left({x}^{\mathrm{2}} −\mathrm{1}\right)!\right)\:=\:\mathrm{5}\left(\left({x}−\mathrm{1}\right)!\right) \\ $$

Answered by JDamian last updated on 25/Jul/20

x∙x((x^2 −1)!) = x∙5((x−1)!)  x^2 ((x^2 −1)!) = 5x((x−1)!)  (x^2 )! = 5∙x!

$$\boldsymbol{{x}}\centerdot{x}\left(\left({x}^{\mathrm{2}} −\mathrm{1}\right)!\right)\:=\:\boldsymbol{{x}}\centerdot\mathrm{5}\left(\left({x}−\mathrm{1}\right)!\right) \\ $$$${x}^{\mathrm{2}} \left(\left({x}^{\mathrm{2}} −\mathrm{1}\right)!\right)\:=\:\mathrm{5}{x}\left(\left({x}−\mathrm{1}\right)!\right) \\ $$$$\left({x}^{\mathrm{2}} \right)!\:=\:\mathrm{5}\centerdot{x}! \\ $$$$ \\ $$

Answered by OlafThorendsen last updated on 25/Jul/20

xΓ(x^2 ) = 5Γ(x)  x^2 Γ(x^2 ) = 5xΓ(x)  Γ(x^2 +1) = 5Γ(x+1)  no solution in C

$${x}\Gamma\left({x}^{\mathrm{2}} \right)\:=\:\mathrm{5}\Gamma\left({x}\right) \\ $$$${x}^{\mathrm{2}} \Gamma\left({x}^{\mathrm{2}} \right)\:=\:\mathrm{5}{x}\Gamma\left({x}\right) \\ $$$$\Gamma\left({x}^{\mathrm{2}} +\mathrm{1}\right)\:=\:\mathrm{5}\Gamma\left({x}+\mathrm{1}\right) \\ $$$$\mathrm{no}\:\mathrm{solution}\:\mathrm{in}\:\mathbb{C} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com