Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 5902 by Ashis last updated on 04/Jun/16

solve x  6^(2x+4)   =3^(3x)  2^(x+8)

$${solve}\:{x} \\ $$$$\mathrm{6}^{\mathrm{2}{x}+\mathrm{4}} \:\:=\mathrm{3}^{\mathrm{3}{x}} \:\mathrm{2}^{{x}+\mathrm{8}} \\ $$

Commented by prakash jain last updated on 04/Jun/16

6^(2x) 6^4 =3^(3x) 2^x 2^8   (2∙3)^(2x) 3^4 2^4 =3^(3x) 2^x 2^8   2^(2x) 3^(2x) 3^4 2^4 =3^(3x) 2^x 2^8   ((2^(2x) 3^(2x) )/(3^(3x) 2^x ))=(2^8 /(3^4 2^4 ))  (2^x /3^x )=(2^4 /3^4 )  ((2/3))^x =((2/3))^4   x=4

$$\mathrm{6}^{\mathrm{2}{x}} \mathrm{6}^{\mathrm{4}} =\mathrm{3}^{\mathrm{3}{x}} \mathrm{2}^{{x}} \mathrm{2}^{\mathrm{8}} \\ $$$$\left(\mathrm{2}\centerdot\mathrm{3}\right)^{\mathrm{2}{x}} \mathrm{3}^{\mathrm{4}} \mathrm{2}^{\mathrm{4}} =\mathrm{3}^{\mathrm{3}{x}} \mathrm{2}^{{x}} \mathrm{2}^{\mathrm{8}} \\ $$$$\mathrm{2}^{\mathrm{2}{x}} \mathrm{3}^{\mathrm{2}{x}} \mathrm{3}^{\mathrm{4}} \mathrm{2}^{\mathrm{4}} =\mathrm{3}^{\mathrm{3}{x}} \mathrm{2}^{{x}} \mathrm{2}^{\mathrm{8}} \\ $$$$\frac{\mathrm{2}^{\mathrm{2}{x}} \mathrm{3}^{\mathrm{2}{x}} }{\mathrm{3}^{\mathrm{3}{x}} \mathrm{2}^{{x}} }=\frac{\mathrm{2}^{\mathrm{8}} }{\mathrm{3}^{\mathrm{4}} \mathrm{2}^{\mathrm{4}} } \\ $$$$\frac{\mathrm{2}^{{x}} }{\mathrm{3}^{{x}} }=\frac{\mathrm{2}^{\mathrm{4}} }{\mathrm{3}^{\mathrm{4}} } \\ $$$$\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{x}} =\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{4}} \\ $$$${x}=\mathrm{4} \\ $$

Answered by sanusihammed last updated on 04/Jun/16

Solution    6^(2x + 4)  = 3^(3x) 2^(x+8)   Take the logarithm of both sides  log6^(2x+4)  = log(3^(3x) 2^(x+8) )  (2x+4)log6 = log3^(3x)  + log2^(x+8)   (2x+4)log6 = 3xlog3 + (x+8)log2  (2x+4)0.7782 = 3x(0.4771) + (x+8)(0.3010)  1.5564x + 3.1128 = 1.4313x + 0.3010x + 2.408  1.5564x + 3.1128 = 1.7323x + 2.408  collect the like terms  1.7323x−1.5564x = 3.1128−2.408  0.1759x = 0.7048  x = ((0.7048)/(0.1759))  x = 4.0068  Approximately  x = 4

$${Solution} \\ $$$$ \\ $$$$\mathrm{6}^{\mathrm{2}{x}\:+\:\mathrm{4}} \:=\:\mathrm{3}^{\mathrm{3}{x}} \mathrm{2}^{{x}+\mathrm{8}} \\ $$$${Take}\:{the}\:{logarithm}\:{of}\:{both}\:{sides} \\ $$$${log}\mathrm{6}^{\mathrm{2}{x}+\mathrm{4}} \:=\:{log}\left(\mathrm{3}^{\mathrm{3}{x}} \mathrm{2}^{{x}+\mathrm{8}} \right) \\ $$$$\left(\mathrm{2}{x}+\mathrm{4}\right){log}\mathrm{6}\:=\:{log}\mathrm{3}^{\mathrm{3}{x}} \:+\:{log}\mathrm{2}^{{x}+\mathrm{8}} \\ $$$$\left(\mathrm{2}{x}+\mathrm{4}\right){log}\mathrm{6}\:=\:\mathrm{3}{xlog}\mathrm{3}\:+\:\left({x}+\mathrm{8}\right){log}\mathrm{2} \\ $$$$\left(\mathrm{2}{x}+\mathrm{4}\right)\mathrm{0}.\mathrm{7782}\:=\:\mathrm{3}{x}\left(\mathrm{0}.\mathrm{4771}\right)\:+\:\left({x}+\mathrm{8}\right)\left(\mathrm{0}.\mathrm{3010}\right) \\ $$$$\mathrm{1}.\mathrm{5564}{x}\:+\:\mathrm{3}.\mathrm{1128}\:=\:\mathrm{1}.\mathrm{4313}{x}\:+\:\mathrm{0}.\mathrm{3010}{x}\:+\:\mathrm{2}.\mathrm{408} \\ $$$$\mathrm{1}.\mathrm{5564}{x}\:+\:\mathrm{3}.\mathrm{1128}\:=\:\mathrm{1}.\mathrm{7323}{x}\:+\:\mathrm{2}.\mathrm{408} \\ $$$${collect}\:{the}\:{like}\:{terms} \\ $$$$\mathrm{1}.\mathrm{7323}{x}−\mathrm{1}.\mathrm{5564}{x}\:=\:\mathrm{3}.\mathrm{1128}−\mathrm{2}.\mathrm{408} \\ $$$$\mathrm{0}.\mathrm{1759}{x}\:=\:\mathrm{0}.\mathrm{7048} \\ $$$${x}\:=\:\frac{\mathrm{0}.\mathrm{7048}}{\mathrm{0}.\mathrm{1759}} \\ $$$${x}\:=\:\mathrm{4}.\mathrm{0068} \\ $$$${Approximately} \\ $$$${x}\:=\:\mathrm{4} \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com