Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 187855 by Michaelfaraday last updated on 23/Feb/23

solve  ∫((x^4 +x^2 +1)/(2(x^2 +1)))dx

$${solve} \\ $$$$\int\frac{{x}^{\mathrm{4}} +{x}^{\mathrm{2}} +\mathrm{1}}{\mathrm{2}\left({x}^{\mathrm{2}} +\mathrm{1}\right)}{dx} \\ $$

Answered by cortano12 last updated on 23/Feb/23

 I=(1/2)∫ (((x^2 +1)^2 −x^2 )/(x^2 +1)) dx   I=(1/6)x^3 +(1/2)x−(1/2)∫ (x^2 /(x^2 +1)) dx   = (1/6)x^3 +(1/2)x−(1/2)∫ ((tan^2 θ)/(sec^2 θ)) sec^2 θ dθ ; x=tan θ   = (1/6)x^3 +(1/2)x−(1/2)∫(sec^2 θ−1)dθ   = (1/6)x^3 +(1/2)x−(1/2)x+(1/2)arctan x+C   = (1/6)x^3 +(1/2)arctan x+C

$$\:\mathrm{I}=\frac{\mathrm{1}}{\mathrm{2}}\int\:\frac{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{dx} \\ $$$$\:\mathrm{I}=\frac{\mathrm{1}}{\mathrm{6}}\mathrm{x}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}−\frac{\mathrm{1}}{\mathrm{2}}\int\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{dx} \\ $$$$\:=\:\frac{\mathrm{1}}{\mathrm{6}}\mathrm{x}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}−\frac{\mathrm{1}}{\mathrm{2}}\int\:\frac{\mathrm{tan}\:^{\mathrm{2}} \theta}{\mathrm{sec}\:^{\mathrm{2}} \theta}\:\mathrm{sec}\:^{\mathrm{2}} \theta\:\mathrm{d}\theta\:;\:\mathrm{x}=\mathrm{tan}\:\theta \\ $$$$\:=\:\frac{\mathrm{1}}{\mathrm{6}}\mathrm{x}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}−\frac{\mathrm{1}}{\mathrm{2}}\int\left(\mathrm{sec}\:^{\mathrm{2}} \theta−\mathrm{1}\right)\mathrm{d}\theta \\ $$$$\:=\:\frac{\mathrm{1}}{\mathrm{6}}\mathrm{x}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{arctan}\:\mathrm{x}+\mathrm{C} \\ $$$$\:=\:\frac{\mathrm{1}}{\mathrm{6}}\mathrm{x}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{2}}\mathrm{arctan}\:\mathrm{x}+\mathrm{C}\: \\ $$

Commented by Michaelfaraday last updated on 25/Feb/23

thanks sir

$${thanks}\:{sir} \\ $$

Answered by CElcedricjunior last updated on 23/Feb/23

∫((x^4 +x^2 +1)/(2(x^2 +1)))dx=(1/2)∫[((x^2 (x^2 +1))/((x^2 +1)))+(1/((x^2 +1)))]dx  =(1/2)∫[x^2 +(1/(x^2 +1))]dx ■Moivre  =(1/2)[(1/3)x^3 +arctan(x)]+k ★Cedric junior

$$\int\frac{\boldsymbol{{x}}^{\mathrm{4}} +\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{1}}{\mathrm{2}\left(\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{1}\right)}\boldsymbol{{dx}}=\frac{\mathrm{1}}{\mathrm{2}}\int\left[\frac{\boldsymbol{{x}}^{\mathrm{2}} \left(\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{1}\right)}{\left(\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{1}\right)}+\frac{\mathrm{1}}{\left(\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{1}\right)}\right]\boldsymbol{{dx}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\left[\boldsymbol{{x}}^{\mathrm{2}} +\frac{\mathrm{1}}{\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{1}}\right]\boldsymbol{{dx}}\:\blacksquare{Moivre} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{\mathrm{1}}{\mathrm{3}}\boldsymbol{{x}}^{\mathrm{3}} +\boldsymbol{{arctan}}\left(\boldsymbol{{x}}\right)\right]+\boldsymbol{{k}}\:\bigstar\mathscr{C}{edric}\:{junior} \\ $$

Commented by Michaelfaraday last updated on 25/Feb/23

thanks sir

$${thanks}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com