Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 107144 by mathmax by abdo last updated on 09/Aug/20

solve x^2 y^(′′) −xy^′  +2y =xe^(−x) sin(2x)

$$\mathrm{solve}\:\mathrm{x}^{\mathrm{2}} \mathrm{y}^{''} −\mathrm{xy}^{'} \:+\mathrm{2y}\:=\mathrm{xe}^{−\mathrm{x}} \mathrm{sin}\left(\mathrm{2x}\right) \\ $$

Answered by bemath last updated on 09/Aug/20

y=x^r  → { ((y′=rx^(r−1) )),((y′′=r(r−1)x^(r−2) )) :}  ⇒x^r (r^2 −r−r+2)=0  r^2 −2r+2=0 ; (r−1)^2 +1=0  r=1±i ⇒y=e^x (C_1 cos x+C_2 sin x)

$${y}={x}^{{r}} \:\rightarrow\begin{cases}{{y}'={rx}^{{r}−\mathrm{1}} }\\{{y}''={r}\left({r}−\mathrm{1}\right){x}^{{r}−\mathrm{2}} }\end{cases} \\ $$$$\Rightarrow{x}^{{r}} \left({r}^{\mathrm{2}} −{r}−{r}+\mathrm{2}\right)=\mathrm{0} \\ $$$${r}^{\mathrm{2}} −\mathrm{2}{r}+\mathrm{2}=\mathrm{0}\:;\:\left({r}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{1}=\mathrm{0} \\ $$$${r}=\mathrm{1}\pm{i}\:\Rightarrow{y}={e}^{{x}} \left({C}_{\mathrm{1}} \mathrm{cos}\:{x}+{C}_{\mathrm{2}} \mathrm{sin}\:{x}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com