Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 63383 by minh2001 last updated on 03/Jul/19

solve this equation in all   part of complex number:  (√((x^9 −3x^2 +1)(x−6)+4))=(x^9 −3x^2 +1)(x−6)−16

$${solve}\:{this}\:{equation}\:{in}\:{all}\: \\ $$$${part}\:{of}\:{complex}\:{number}: \\ $$$$\sqrt{\left({x}^{\mathrm{9}} −\mathrm{3}{x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}−\mathrm{6}\right)+\mathrm{4}}=\left({x}^{\mathrm{9}} −\mathrm{3}{x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}−\mathrm{6}\right)−\mathrm{16} \\ $$

Commented by MJS last updated on 04/Jul/19

waiting to see your solution

$$\mathrm{waiting}\:\mathrm{to}\:\mathrm{see}\:\mathrm{your}\:\mathrm{solution} \\ $$

Answered by MJS last updated on 03/Jul/19

(√(t+4))=t−16  t+4=(t−16)^2   t^2 −33t+252=0  ⇒ t=12∨t=21  but t=12 is no solution of (√(t+4))=t−16  ⇒ t=21  (x^9 −3x^2 +1)(x−6)=21  (x+1)(x^9 −7x^8 +7x^7 −7x^6 +7x^5 −7x^4 +7x^3 −10x^2 +28x−27)=0  x_1 =−1  we cannot exactly solve the rest  x_2 ≈6.00000208  the other 8 roots are complex (4 pairs of conjugated complex roots)  if it′s  (√((x^3 −3x^2 +1)(x−6)+4))=(x^3 −3x^2 +1)(x−6)−16  we can:  (x^3 −3x^2 +1)(x−6)=21  (x+1)(x^3 −10x^2 +28x−27)=0  x_1 =−1  x_2 =((10)/3)+((((209)/(54))−((√(337))/6)))^(1/3) +((((209)/(54))+((√(337))/6)))^(1/3)   x_3 =((10)/3)+(−(1/2)−((√3)/2)i)((((209)/(54))−((√(337))/6)))^(1/3) +(−(1/2)+((√3)/2)i)((((209)/(54))+((√(337))/6)))^(1/3)   x_4 =((10)/3)+(−(1/2)+((√3)/2)i)((((209)/(54))−((√(337))/6)))^(1/3) +(−(1/2)−((√3)/2)i)((((209)/(54))+((√(337))/6)))^(1/3)

$$\sqrt{{t}+\mathrm{4}}={t}−\mathrm{16} \\ $$$${t}+\mathrm{4}=\left({t}−\mathrm{16}\right)^{\mathrm{2}} \\ $$$${t}^{\mathrm{2}} −\mathrm{33}{t}+\mathrm{252}=\mathrm{0} \\ $$$$\Rightarrow\:{t}=\mathrm{12}\vee{t}=\mathrm{21} \\ $$$$\mathrm{but}\:{t}=\mathrm{12}\:\mathrm{is}\:\mathrm{no}\:\mathrm{solution}\:\mathrm{of}\:\sqrt{{t}+\mathrm{4}}={t}−\mathrm{16} \\ $$$$\Rightarrow\:{t}=\mathrm{21} \\ $$$$\left({x}^{\mathrm{9}} −\mathrm{3}{x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}−\mathrm{6}\right)=\mathrm{21} \\ $$$$\left({x}+\mathrm{1}\right)\left({x}^{\mathrm{9}} −\mathrm{7}{x}^{\mathrm{8}} +\mathrm{7}{x}^{\mathrm{7}} −\mathrm{7}{x}^{\mathrm{6}} +\mathrm{7}{x}^{\mathrm{5}} −\mathrm{7}{x}^{\mathrm{4}} +\mathrm{7}{x}^{\mathrm{3}} −\mathrm{10}{x}^{\mathrm{2}} +\mathrm{28}{x}−\mathrm{27}\right)=\mathrm{0} \\ $$$${x}_{\mathrm{1}} =−\mathrm{1} \\ $$$$\mathrm{we}\:\mathrm{cannot}\:\mathrm{exactly}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{rest} \\ $$$${x}_{\mathrm{2}} \approx\mathrm{6}.\mathrm{00000208} \\ $$$$\mathrm{the}\:\mathrm{other}\:\mathrm{8}\:\mathrm{roots}\:\mathrm{are}\:\mathrm{complex}\:\left(\mathrm{4}\:\mathrm{pairs}\:\mathrm{of}\:\mathrm{conjugated}\:\mathrm{complex}\:\mathrm{roots}\right) \\ $$$$\mathrm{if}\:\mathrm{it}'\mathrm{s} \\ $$$$\sqrt{\left({x}^{\mathrm{3}} −\mathrm{3}{x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}−\mathrm{6}\right)+\mathrm{4}}=\left({x}^{\mathrm{3}} −\mathrm{3}{x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}−\mathrm{6}\right)−\mathrm{16} \\ $$$$\mathrm{we}\:\mathrm{can}: \\ $$$$\left({x}^{\mathrm{3}} −\mathrm{3}{x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}−\mathrm{6}\right)=\mathrm{21} \\ $$$$\left({x}+\mathrm{1}\right)\left({x}^{\mathrm{3}} −\mathrm{10}{x}^{\mathrm{2}} +\mathrm{28}{x}−\mathrm{27}\right)=\mathrm{0} \\ $$$${x}_{\mathrm{1}} =−\mathrm{1} \\ $$$${x}_{\mathrm{2}} =\frac{\mathrm{10}}{\mathrm{3}}+\sqrt[{\mathrm{3}}]{\frac{\mathrm{209}}{\mathrm{54}}−\frac{\sqrt{\mathrm{337}}}{\mathrm{6}}}+\sqrt[{\mathrm{3}}]{\frac{\mathrm{209}}{\mathrm{54}}+\frac{\sqrt{\mathrm{337}}}{\mathrm{6}}} \\ $$$${x}_{\mathrm{3}} =\frac{\mathrm{10}}{\mathrm{3}}+\left(−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right)\sqrt[{\mathrm{3}}]{\frac{\mathrm{209}}{\mathrm{54}}−\frac{\sqrt{\mathrm{337}}}{\mathrm{6}}}+\left(−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right)\sqrt[{\mathrm{3}}]{\frac{\mathrm{209}}{\mathrm{54}}+\frac{\sqrt{\mathrm{337}}}{\mathrm{6}}} \\ $$$${x}_{\mathrm{4}} =\frac{\mathrm{10}}{\mathrm{3}}+\left(−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right)\sqrt[{\mathrm{3}}]{\frac{\mathrm{209}}{\mathrm{54}}−\frac{\sqrt{\mathrm{337}}}{\mathrm{6}}}+\left(−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right)\sqrt[{\mathrm{3}}]{\frac{\mathrm{209}}{\mathrm{54}}+\frac{\sqrt{\mathrm{337}}}{\mathrm{6}}} \\ $$

Commented by minh2001 last updated on 04/Jul/19

No,you were wrong .Why  you set x^3  but not x^9 .I′ve  found other 8 solutions as  your mean,thank you

$${No},{you}\:{were}\:{wrong}\:.{Why} \\ $$$${you}\:{set}\:{x}^{\mathrm{3}} \:{but}\:{not}\:{x}^{\mathrm{9}} .{I}'{ve} \\ $$$${found}\:{other}\:\mathrm{8}\:{solutions}\:{as} \\ $$$${your}\:{mean},{thank}\:{you} \\ $$

Commented by MJS last updated on 04/Jul/19

so show us how you found them  I can approximate them all

$$\mathrm{so}\:\mathrm{show}\:\mathrm{us}\:\mathrm{how}\:\mathrm{you}\:\mathrm{found}\:\mathrm{them} \\ $$$$\mathrm{I}\:\mathrm{can}\:\mathrm{approximate}\:\mathrm{them}\:\mathrm{all} \\ $$

Commented by MJS last updated on 04/Jul/19

with x^9   x_1 =−1  x_2 ≈6.00000208383  x_(3, 4) ≈−.994927692081±.650751638656i  x_(5, 6) ≈−.262576070729±1.25073913893i  x_(7, 8) ≈.684103814572±1.04916880346i  x_(9, 10) ≈1.07339890633±.300735402858i

$$\mathrm{with}\:{x}^{\mathrm{9}} \\ $$$${x}_{\mathrm{1}} =−\mathrm{1} \\ $$$${x}_{\mathrm{2}} \approx\mathrm{6}.\mathrm{00000208383} \\ $$$${x}_{\mathrm{3},\:\mathrm{4}} \approx−.\mathrm{994927692081}\pm.\mathrm{650751638656i} \\ $$$${x}_{\mathrm{5},\:\mathrm{6}} \approx−.\mathrm{262576070729}\pm\mathrm{1}.\mathrm{25073913893i} \\ $$$${x}_{\mathrm{7},\:\mathrm{8}} \approx.\mathrm{684103814572}\pm\mathrm{1}.\mathrm{04916880346i} \\ $$$${x}_{\mathrm{9},\:\mathrm{10}} \approx\mathrm{1}.\mathrm{07339890633}\pm.\mathrm{300735402858i} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com