Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 75721 by Gazella thomsonii last updated on 15/Dec/19

solve this complex integral∫_(−∞) ^(+∞)  (e^(it) /(√(1+t^2 )))dt

$$\mathrm{solve}\:\mathrm{this}\:\mathrm{complex}\:\mathrm{integral}\int_{−\infty} ^{+\infty} \:\frac{{e}^{\boldsymbol{{i}}{t}} }{\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}\mathrm{d}{t} \\ $$

Commented by MJS last updated on 15/Dec/19

∫_(−∞) ^∞ (e^(it) /(√(t^2 +1)))dt=2∫_0 ^∞ ((cos t)/(√(t^2 +1)))dt+i∫_(−∞) ^∞ ((sin t)/(√(t^2 +1)))dt=  =2∫_0 ^∞ ((cos t)/(√(t^2 +1)))dt  but I cannot solve this...

$$\underset{−\infty} {\overset{\infty} {\int}}\frac{\mathrm{e}^{\mathrm{i}{t}} }{\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}}{dt}=\mathrm{2}\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{\mathrm{cos}\:{t}}{\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}}{dt}+\mathrm{i}\underset{−\infty} {\overset{\infty} {\int}}\frac{\mathrm{sin}\:{t}}{\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}}{dt}= \\ $$$$=\mathrm{2}\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{\mathrm{cos}\:{t}}{\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}}{dt} \\ $$$$\mathrm{but}\:\mathrm{I}\:\mathrm{cannot}\:\mathrm{solve}\:\mathrm{this}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com