Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 71838 by Rio Michael last updated on 20/Oct/19

solve the system of linear congruences    x ≡ 2 (mod 3)  x ≡ 4(mod 5)  x ≡ 7 (mod 9)  x≡ 11( mod 13)  using the Brute force method

$${solve}\:{the}\:{system}\:{of}\:{linear}\:{congruences}\: \\ $$$$\:{x}\:\equiv\:\mathrm{2}\:\left({mod}\:\mathrm{3}\right) \\ $$$${x}\:\equiv\:\mathrm{4}\left({mod}\:\mathrm{5}\right) \\ $$$${x}\:\equiv\:\mathrm{7}\:\left({mod}\:\mathrm{9}\right) \\ $$$${x}\equiv\:\mathrm{11}\left(\:{mod}\:\mathrm{13}\right) \\ $$$${using}\:{the}\:{Brute}\:{force}\:{method} \\ $$

Commented by mind is power last updated on 20/Oct/19

⇔  x≡4(5)  x≡7(9)  x≡11(13)  x≡4(5),x≡7(9)⇔x≡34  (45)  our system⇔ { ((x≡34(45))),((x≡11(13))) :}⇔x≡ 349(585)  solution x≡349(585)

$$\Leftrightarrow \\ $$$$\mathrm{x}\equiv\mathrm{4}\left(\mathrm{5}\right) \\ $$$$\mathrm{x}\equiv\mathrm{7}\left(\mathrm{9}\right) \\ $$$$\mathrm{x}\equiv\mathrm{11}\left(\mathrm{13}\right) \\ $$$$\mathrm{x}\equiv\mathrm{4}\left(\mathrm{5}\right),\mathrm{x}\equiv\mathrm{7}\left(\mathrm{9}\right)\Leftrightarrow\mathrm{x}\equiv\mathrm{34}\:\:\left(\mathrm{45}\right) \\ $$$$\mathrm{our}\:\mathrm{system}\Leftrightarrow\begin{cases}{\mathrm{x}\equiv\mathrm{34}\left(\mathrm{45}\right)}\\{\mathrm{x}\equiv\mathrm{11}\left(\mathrm{13}\right)}\end{cases}\Leftrightarrow\mathrm{x}\equiv\:\mathrm{349}\left(\mathrm{585}\right) \\ $$$$\mathrm{solution}\:\mathrm{x}\equiv\mathrm{349}\left(\mathrm{585}\right) \\ $$

Commented by mr W last updated on 21/Oct/19

x ≡ 2 (mod 3) and   x ≡ 7 (mod 9) are contradictory!  x=9k+7=3(3k+2)+1=3m+1≠3m+2

$${x}\:\equiv\:\mathrm{2}\:\left({mod}\:\mathrm{3}\right)\:{and}\: \\ $$$${x}\:\equiv\:\mathrm{7}\:\left({mod}\:\mathrm{9}\right)\:{are}\:{contradictory}! \\ $$$${x}=\mathrm{9}{k}+\mathrm{7}=\mathrm{3}\left(\mathrm{3}{k}+\mathrm{2}\right)+\mathrm{1}=\mathrm{3}{m}+\mathrm{1}\neq\mathrm{3}{m}+\mathrm{2} \\ $$

Commented by mind is power last updated on 21/Oct/19

yeah

$$\mathrm{yeah}\: \\ $$

Answered by mr W last updated on 21/Oct/19

x=13a+11=9b+7  9b−13a=4  ⇒b=13c−1, a=9c+1  x=9(13c−1)+7=117c−2=5d+4  117c−5d=6  ⇒d=117e+69, c=5e+3  x=5(117e+69)+4=585e+349=^(!) 3f+2  3(f−195e)=347 ⇒impossible  x ≡ 2 (mod 3) is contradiction!    solution is x=585n+349

$${x}=\mathrm{13}{a}+\mathrm{11}=\mathrm{9}{b}+\mathrm{7} \\ $$$$\mathrm{9}{b}−\mathrm{13}{a}=\mathrm{4} \\ $$$$\Rightarrow{b}=\mathrm{13}{c}−\mathrm{1},\:{a}=\mathrm{9}{c}+\mathrm{1} \\ $$$${x}=\mathrm{9}\left(\mathrm{13}{c}−\mathrm{1}\right)+\mathrm{7}=\mathrm{117}{c}−\mathrm{2}=\mathrm{5}{d}+\mathrm{4} \\ $$$$\mathrm{117}{c}−\mathrm{5}{d}=\mathrm{6} \\ $$$$\Rightarrow{d}=\mathrm{117}{e}+\mathrm{69},\:{c}=\mathrm{5}{e}+\mathrm{3} \\ $$$${x}=\mathrm{5}\left(\mathrm{117}{e}+\mathrm{69}\right)+\mathrm{4}=\mathrm{585}{e}+\mathrm{349}\overset{!} {=}\mathrm{3}{f}+\mathrm{2} \\ $$$$\mathrm{3}\left({f}−\mathrm{195}{e}\right)=\mathrm{347}\:\Rightarrow{impossible} \\ $$$${x}\:\equiv\:\mathrm{2}\:\left({mod}\:\mathrm{3}\right)\:{is}\:{contradiction}! \\ $$$$ \\ $$$${solution}\:{is}\:{x}=\mathrm{585}{n}+\mathrm{349} \\ $$

Commented by Rio Michael last updated on 21/Oct/19

thank you so much sir

$${thank}\:{you}\:{so}\:{much}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com