Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 75938 by Rio Michael last updated on 21/Dec/19

solve the inequality   ln(x^2 −4e^2 )< 1 + ln3x

$${solve}\:{the}\:{inequality} \\ $$$$\:{ln}\left({x}^{\mathrm{2}} −\mathrm{4}{e}^{\mathrm{2}} \right)<\:\mathrm{1}\:+\:{ln}\mathrm{3}{x} \\ $$

Commented by turbo msup by abdo last updated on 21/Dec/19

(e) ln(x^2 −4e^2 )<ln(3ex)  equation defined if x^2 −4e^2 >0   and c>0 ⇒∣x∣>2e and x>0 ⇒  x>2e  (e) ⇔x^2 −4e^2 −3ex<0 ⇒  x^2 −3ex −4e^2 <0  Δ=(−3e)^2 −4(−4e^2 )  =9e^2  +26e^2 =25e^2  ⇒  x_1 =((3e+5e)/2) =4e  x_2 =((3e−5e)/2)=−e the first solution  is 4e.

$$\left({e}\right)\:{ln}\left({x}^{\mathrm{2}} −\mathrm{4}{e}^{\mathrm{2}} \right)<{ln}\left(\mathrm{3}{ex}\right) \\ $$$${equation}\:{defined}\:{if}\:{x}^{\mathrm{2}} −\mathrm{4}{e}^{\mathrm{2}} >\mathrm{0}\: \\ $$$${and}\:{c}>\mathrm{0}\:\Rightarrow\mid{x}\mid>\mathrm{2}{e}\:{and}\:{x}>\mathrm{0}\:\Rightarrow \\ $$$${x}>\mathrm{2}{e} \\ $$$$\left({e}\right)\:\Leftrightarrow{x}^{\mathrm{2}} −\mathrm{4}{e}^{\mathrm{2}} −\mathrm{3}{ex}<\mathrm{0}\:\Rightarrow \\ $$$${x}^{\mathrm{2}} −\mathrm{3}{ex}\:−\mathrm{4}{e}^{\mathrm{2}} <\mathrm{0} \\ $$$$\Delta=\left(−\mathrm{3}{e}\right)^{\mathrm{2}} −\mathrm{4}\left(−\mathrm{4}{e}^{\mathrm{2}} \right) \\ $$$$=\mathrm{9}{e}^{\mathrm{2}} \:+\mathrm{26}{e}^{\mathrm{2}} =\mathrm{25}{e}^{\mathrm{2}} \:\Rightarrow \\ $$$${x}_{\mathrm{1}} =\frac{\mathrm{3}{e}+\mathrm{5}{e}}{\mathrm{2}}\:=\mathrm{4}{e} \\ $$$${x}_{\mathrm{2}} =\frac{\mathrm{3}{e}−\mathrm{5}{e}}{\mathrm{2}}=−{e}\:{the}\:{first}\:{solution} \\ $$$${is}\:\mathrm{4}{e}. \\ $$

Commented by Rio Michael last updated on 21/Dec/19

thanks

$${thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com