Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 109734 by mathdave last updated on 25/Aug/20

solve the following integral  1)∫_3 ^7 4(√((x−3)(7−x)))dx  2)∫_0 ^∞ ((xln^2 (1+x))/((1+x)^3 ))dx  3)∫_0 ^(π/4) [ln(1−tanx)]^2 dx=(π/2)ln2−2G  4)∫_0 ^(π/4) ln(1+cotx)dx=(π/8)ln2+G  5)∫_0 ^(π/2) ln(2+cosx)dx

$${solve}\:{the}\:{following}\:{integral} \\ $$$$\left.\mathrm{1}\right)\int_{\mathrm{3}} ^{\mathrm{7}} \mathrm{4}\sqrt{\left({x}−\mathrm{3}\right)\left(\mathrm{7}−{x}\right)}{dx} \\ $$$$\left.\mathrm{2}\right)\int_{\mathrm{0}} ^{\infty} \frac{{x}\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}+{x}\right)}{\left(\mathrm{1}+{x}\right)^{\mathrm{3}} }{dx} \\ $$$$\left.\mathrm{3}\right)\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \left[\mathrm{ln}\left(\mathrm{1}−\mathrm{tan}{x}\right)\right]^{\mathrm{2}} {dx}=\frac{\pi}{\mathrm{2}}\mathrm{ln2}−\mathrm{2}{G} \\ $$$$\left.\mathrm{4}\right)\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{1}+\mathrm{cot}{x}\right){dx}=\frac{\pi}{\mathrm{8}}\mathrm{ln2}+{G} \\ $$$$\left.\mathrm{5}\right)\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\mathrm{2}+\mathrm{cos}{x}\right){dx} \\ $$

Answered by bobhans last updated on 25/Aug/20

(1) ∫_3 ^7  4(√(4−(5−x)^2 )) dx = I  let 5−x=2sin w → { ((w=π/2)),((w=−π/2)) :}  I=∫_(π/2) ^(−π/2) 4(√(4−4sin^2 w)) (−2cos w dw)  I= ∫_(−π/2) ^(π/2) 16 cos^2 w dw = 16∫_(−π/2) ^(π/2) ((1/2)+(1/2)cos 2w)dw  =8[w+(1/2)sin 2w]_(−π/2) ^(π/2) = 8[π+0]=8π

$$\left(\mathrm{1}\right)\:\underset{\mathrm{3}} {\overset{\mathrm{7}} {\int}}\:\mathrm{4}\sqrt{\mathrm{4}−\left(\mathrm{5}−{x}\right)^{\mathrm{2}} }\:{dx}\:=\:{I} \\ $$$${let}\:\mathrm{5}−{x}=\mathrm{2sin}\:{w}\:\rightarrow\begin{cases}{{w}=\pi/\mathrm{2}}\\{{w}=−\pi/\mathrm{2}}\end{cases} \\ $$$${I}=\underset{\pi/\mathrm{2}} {\overset{−\pi/\mathrm{2}} {\int}}\mathrm{4}\sqrt{\mathrm{4}−\mathrm{4sin}\:^{\mathrm{2}} {w}}\:\left(−\mathrm{2cos}\:{w}\:{dw}\right) \\ $$$${I}=\:\underset{−\pi/\mathrm{2}} {\overset{\pi/\mathrm{2}} {\int}}\mathrm{16}\:\mathrm{cos}\:^{\mathrm{2}} {w}\:{dw}\:=\:\mathrm{16}\underset{−\pi/\mathrm{2}} {\overset{\pi/\mathrm{2}} {\int}}\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}\:\mathrm{2}{w}\right){dw} \\ $$$$=\mathrm{8}\left[{w}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:\mathrm{2}{w}\right]_{−\pi/\mathrm{2}} ^{\pi/\mathrm{2}} =\:\mathrm{8}\left[\pi+\mathrm{0}\right]=\mathrm{8}\pi \\ $$

Commented by mathdave last updated on 25/Aug/20

that 4 near the root is fourth root oooo

$${that}\:\mathrm{4}\:{near}\:{the}\:{root}\:{is}\:{fourth}\:{root}\:{oooo} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com