Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 206449 by necx122 last updated on 15/Apr/24

solve the first order differential  equation:    xdy − ydx = (xy)^(1/2) dx

$${solve}\:{the}\:{first}\:{order}\:{differential} \\ $$$${equation}: \\ $$$$ \\ $$$${xdy}\:−\:{ydx}\:=\:\left({xy}\right)^{\mathrm{1}/\mathrm{2}} {dx} \\ $$

Answered by Berbere last updated on 17/Apr/24

y′x−y=(√(xy));y′=(dy/dx)  ((y′x−y)/x^2 )=(√(y/x)).(1/x)  d((y/x))=((y/x))^(1/2) .(1/x)dx  ((d((y/x)))/( (√(y/x))))=(1/x)⇒2(√(y/x))=ln(x)+c⇒(y/x)=(((ln(x)+c)/2))^2   y=x(c′+ln((√x)))^2

$${y}'{x}−{y}=\sqrt{{xy}};{y}'=\frac{{dy}}{{dx}} \\ $$$$\frac{{y}'{x}−{y}}{{x}^{\mathrm{2}} }=\sqrt{\frac{{y}}{{x}}}.\frac{\mathrm{1}}{{x}} \\ $$$${d}\left(\frac{{y}}{{x}}\right)=\left(\frac{{y}}{{x}}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} .\frac{\mathrm{1}}{{x}}{dx} \\ $$$$\frac{{d}\left(\frac{{y}}{{x}}\right)}{\:\sqrt{\frac{{y}}{{x}}}}=\frac{\mathrm{1}}{{x}}\Rightarrow\mathrm{2}\sqrt{\frac{{y}}{{x}}}={ln}\left({x}\right)+{c}\Rightarrow\frac{{y}}{{x}}=\left(\frac{{ln}\left({x}\right)+{c}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$${y}={x}\left({c}'+{ln}\left(\sqrt{{x}}\right)\right)^{\mathrm{2}} \\ $$

Commented by necx122 last updated on 17/Apr/24

please, csn you explain the 3rd line?  did you do dy/dx or d(y/x)?

$${please},\:{csn}\:{you}\:{explain}\:{the}\:\mathrm{3}{rd}\:{line}? \\ $$$${did}\:{you}\:{do}\:{dy}/{dx}\:{or}\:{d}\left({y}/{x}\right)? \\ $$

Commented by Berbere last updated on 17/Apr/24

((y′.x−1.y)/x^2 )=((y/x))′=(d/dx)((y/x))

$$\frac{{y}'.{x}−\mathrm{1}.{y}}{{x}^{\mathrm{2}} }=\left(\frac{{y}}{{x}}\right)'=\frac{{d}}{{dx}}\left(\frac{{y}}{{x}}\right) \\ $$

Commented by necx122 last updated on 17/Apr/24

Thank you sir. It's clear now.

Commented by Berbere last updated on 18/Apr/24

withe Pleasur

$${withe}\:{Pleasur} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com