Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 17576 by chux last updated on 07/Jul/17

solve the equation    x^y =y^x .......(1)    x^2 =y^3 .......(2)

$$\mathrm{solve}\:\mathrm{the}\:\mathrm{equation} \\ $$$$ \\ $$$$\mathrm{x}^{\mathrm{y}} =\mathrm{y}^{\mathrm{x}} .......\left(\mathrm{1}\right) \\ $$$$ \\ $$$$\mathrm{x}^{\mathrm{2}} =\mathrm{y}^{\mathrm{3}} .......\left(\mathrm{2}\right) \\ $$

Answered by b.e.h.i.8.3.417@gmail.com last updated on 08/Jul/17

(x^2 )^y =(y^3 )^y ⇒(x^y )^2 =y^(3y) ⇒(y^x )^2 =y^(3y)   ⇒y^(2x) =y^(3y) ⇒2x=3y  ⇒((3/2)y)^2 =y^3 ⇒y^2 (y−(9/4))=0⇒y=0,(9/4)  ⇒x=0,(3/2).(9/4)=0,((27)/8).  ⇒(x,y)=(((27)/8),(9/4)).  note: (x,y)=(1,1),is also a solution.  but:(x,y)=(0,0),not acceptable.

$$\left({x}^{\mathrm{2}} \right)^{{y}} =\left({y}^{\mathrm{3}} \right)^{{y}} \Rightarrow\left({x}^{{y}} \right)^{\mathrm{2}} ={y}^{\mathrm{3}{y}} \Rightarrow\left({y}^{{x}} \right)^{\mathrm{2}} ={y}^{\mathrm{3}{y}} \\ $$$$\Rightarrow{y}^{\mathrm{2}{x}} ={y}^{\mathrm{3}{y}} \Rightarrow\mathrm{2}{x}=\mathrm{3}{y} \\ $$$$\Rightarrow\left(\frac{\mathrm{3}}{\mathrm{2}}{y}\right)^{\mathrm{2}} ={y}^{\mathrm{3}} \Rightarrow{y}^{\mathrm{2}} \left({y}−\frac{\mathrm{9}}{\mathrm{4}}\right)=\mathrm{0}\Rightarrow{y}=\mathrm{0},\frac{\mathrm{9}}{\mathrm{4}} \\ $$$$\Rightarrow{x}=\mathrm{0},\frac{\mathrm{3}}{\mathrm{2}}.\frac{\mathrm{9}}{\mathrm{4}}=\mathrm{0},\frac{\mathrm{27}}{\mathrm{8}}. \\ $$$$\Rightarrow\left({x},{y}\right)=\left(\frac{\mathrm{27}}{\mathrm{8}},\frac{\mathrm{9}}{\mathrm{4}}\right). \\ $$$${note}:\:\left({x},{y}\right)=\left(\mathrm{1},\mathrm{1}\right),{is}\:{also}\:{a}\:{solution}. \\ $$$${but}:\left({x},{y}\right)=\left(\mathrm{0},\mathrm{0}\right),{not}\:{acceptable}. \\ $$

Commented by chux last updated on 08/Jul/17

thank you sir

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by chux last updated on 08/Jul/17

please can it be solved analytically  to get (x,y)=(1,1)

$$\mathrm{please}\:\mathrm{can}\:\mathrm{it}\:\mathrm{be}\:\mathrm{solved}\:\mathrm{analytically} \\ $$$$\mathrm{to}\:\mathrm{get}\:\left(\mathrm{x},\mathrm{y}\right)=\left(\mathrm{1},\mathrm{1}\right) \\ $$

Commented by mrW1 last updated on 08/Jul/17

from y^(2x) =y^(3y)   ⇒2x=3y      ...(i)  or  ⇒y=1    ...(ii)    from (ii)  ⇒y=1  ⇒x=1

$$\mathrm{from}\:{y}^{\mathrm{2}{x}} ={y}^{\mathrm{3}{y}} \\ $$$$\Rightarrow\mathrm{2}{x}=\mathrm{3}{y}\:\:\:\:\:\:...\left(\mathrm{i}\right) \\ $$$$\mathrm{or} \\ $$$$\Rightarrow\mathrm{y}=\mathrm{1}\:\:\:\:...\left(\mathrm{ii}\right) \\ $$$$ \\ $$$$\mathrm{from}\:\left(\mathrm{ii}\right) \\ $$$$\Rightarrow\mathrm{y}=\mathrm{1} \\ $$$$\Rightarrow\mathrm{x}=\mathrm{1} \\ $$

Commented by chux last updated on 08/Jul/17

ok.... but can lambert W function  solve it?

$$\mathrm{ok}....\:\mathrm{but}\:\mathrm{can}\:\mathrm{lambert}\:\mathrm{W}\:\mathrm{function} \\ $$$$\mathrm{solve}\:\mathrm{it}? \\ $$

Commented by mrW1 last updated on 09/Jul/17

you have seen it can be solved without  lambert function.

$$\mathrm{you}\:\mathrm{have}\:\mathrm{seen}\:\mathrm{it}\:\mathrm{can}\:\mathrm{be}\:\mathrm{solved}\:\mathrm{without} \\ $$$$\mathrm{lambert}\:\mathrm{function}. \\ $$

Commented by chux last updated on 09/Jul/17

thank you sir

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com