Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 162959 by mkam last updated on 02/Jan/22

solve the differential equation y = x + p^3

$${solve}\:{the}\:{differential}\:{equation}\:{y}\:=\:{x}\:+\:{p}^{\mathrm{3}} \\ $$

Commented by mr W last updated on 02/Jan/22

this is not a differential equation.

$${this}\:{is}\:{not}\:{a}\:{differential}\:{equation}. \\ $$

Commented by Kamel last updated on 02/Jan/22

Mr W p=(dy/dx).

$${Mr}\:{W}\:{p}=\frac{{dy}}{{dx}}. \\ $$

Commented by mr W last updated on 02/Jan/22

what is then p^3  ?  p^3 =((dy/dx))^3  ? or p^3 =y′′′=(d^3 y/dx^3 ) ?

$${what}\:{is}\:{then}\:{p}^{\mathrm{3}} \:? \\ $$$${p}^{\mathrm{3}} =\left(\frac{{dy}}{{dx}}\right)^{\mathrm{3}} \:?\:{or}\:{p}^{\mathrm{3}} ={y}'''=\frac{{d}^{\mathrm{3}} {y}}{{dx}^{\mathrm{3}} }\:? \\ $$

Commented by Kamel last updated on 02/Jan/22

(E)⇔((dy/dx))^3 +x=y

$$\left({E}\right)\Leftrightarrow\left(\frac{{dy}}{{dx}}\right)^{\mathrm{3}} +{x}={y} \\ $$

Commented by mkam last updated on 02/Jan/22

yes sir

$${yes}\:{sir} \\ $$

Answered by mr W last updated on 02/Jan/22

((dy/dx))^3 +x=y  let u=y−x  (du/dx)=(dy/dx)−1  ((du/dx)+1)^3 =u  (du/dx)=(u)^(1/3) −1  (du/( (u)^(1/3) −1))=dx  ∫(du/( (u)^(1/3) −1))=∫dx  let t=(u)^(1/3) −1  u=(t+1)^3   du=3(t+1)^2 dt  ∫((3(t+1)^2 )/t)dt=∫dx  3∫(t+2+(1/t))dt=∫dx  3((t^2 /2)+2t+ln t)+C=x  (((t+2)^2 )/2)+ln t+C=(x/3)  ((((u)^(1/3) +1)^2 )/2)+ln ((u)^(1/3) −1)+C=(x/3)  ⇒(((((y−x))^(1/3) +1)^2 )/2)+ln (((y−x))^(1/3) −1)+C=(x/3)

$$\left(\frac{{dy}}{{dx}}\right)^{\mathrm{3}} +{x}={y} \\ $$$${let}\:{u}={y}−{x} \\ $$$$\frac{{du}}{{dx}}=\frac{{dy}}{{dx}}−\mathrm{1} \\ $$$$\left(\frac{{du}}{{dx}}+\mathrm{1}\right)^{\mathrm{3}} ={u} \\ $$$$\frac{{du}}{{dx}}=\sqrt[{\mathrm{3}}]{{u}}−\mathrm{1} \\ $$$$\frac{{du}}{\:\sqrt[{\mathrm{3}}]{{u}}−\mathrm{1}}={dx} \\ $$$$\int\frac{{du}}{\:\sqrt[{\mathrm{3}}]{{u}}−\mathrm{1}}=\int{dx} \\ $$$${let}\:{t}=\sqrt[{\mathrm{3}}]{{u}}−\mathrm{1} \\ $$$${u}=\left({t}+\mathrm{1}\right)^{\mathrm{3}} \\ $$$${du}=\mathrm{3}\left({t}+\mathrm{1}\right)^{\mathrm{2}} {dt} \\ $$$$\int\frac{\mathrm{3}\left({t}+\mathrm{1}\right)^{\mathrm{2}} }{{t}}{dt}=\int{dx} \\ $$$$\mathrm{3}\int\left({t}+\mathrm{2}+\frac{\mathrm{1}}{{t}}\right){dt}=\int{dx} \\ $$$$\mathrm{3}\left(\frac{{t}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{2}{t}+\mathrm{ln}\:{t}\right)+{C}={x} \\ $$$$\frac{\left({t}+\mathrm{2}\right)^{\mathrm{2}} }{\mathrm{2}}+\mathrm{ln}\:{t}+{C}=\frac{{x}}{\mathrm{3}} \\ $$$$\frac{\left(\sqrt[{\mathrm{3}}]{{u}}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{2}}+\mathrm{ln}\:\left(\sqrt[{\mathrm{3}}]{{u}}−\mathrm{1}\right)+{C}=\frac{{x}}{\mathrm{3}} \\ $$$$\Rightarrow\frac{\left(\sqrt[{\mathrm{3}}]{{y}−{x}}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{2}}+\mathrm{ln}\:\left(\sqrt[{\mathrm{3}}]{{y}−{x}}−\mathrm{1}\right)+{C}=\frac{{x}}{\mathrm{3}} \\ $$

Commented by Kamel last updated on 02/Jan/22

This is a Gauss differential equation  for example y=1+x is a singular solution.  If we consider that p=(dy/dx) we get a linear   differential equation with x, then if we solve it we get  a general solution of equation with   parameter p=Const.

$${This}\:{is}\:{a}\:{Gauss}\:{differential}\:{equation} \\ $$$${for}\:{example}\:{y}=\mathrm{1}+{x}\:{is}\:{a}\:{singular}\:{solution}. \\ $$$${If}\:{we}\:{consider}\:{that}\:{p}=\frac{{dy}}{{dx}}\:{we}\:{get}\:{a}\:{linear} \\ $$$$\:{differential}\:{equation}\:{with}\:{x},\:{then}\:{if}\:{we}\:{solve}\:{it}\:{we}\:{get} \\ $$$${a}\:{general}\:{solution}\:{of}\:{equation}\:{with} \\ $$$$\:{parameter}\:{p}={Const}. \\ $$

Commented by mr W last updated on 02/Jan/22

i don′t understand that much. what  is then the solution? is anything  wrong in my solution?

$${i}\:{don}'{t}\:{understand}\:{that}\:{much}.\:{what} \\ $$$${is}\:{then}\:{the}\:{solution}?\:{is}\:{anything} \\ $$$${wrong}\:{in}\:{my}\:{solution}? \\ $$

Commented by Kamel last updated on 02/Jan/22

No, it′s correct.

$${No},\:{it}'{s}\:{correct}.\: \\ $$

Commented by mr W last updated on 02/Jan/22

thanks for confirming sir!

$${thanks}\:{for}\:{confirming}\:{sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com