Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 67398 by mhmd last updated on 26/Aug/19

solve the defrintion eguation (xp^2 −p+2x)=0  when p=dy/dx

$${solve}\:{the}\:{defrintion}\:{eguation}\:\left({xp}^{\mathrm{2}} −{p}+\mathrm{2}{x}\right)=\mathrm{0} \\ $$$${when}\:{p}={dy}/{dx} \\ $$

Commented by mathmax by abdo last updated on 26/Aug/19

xy^(′′) −y^′  =2x   we use the changement y^′  =z  (e) ⇒xz^′ −z =2x    (he) →xz^′ −z =0 ⇒xz^′  =z ⇒(z^′ /z) =(1/x) ⇒  ln∣z∣ =ln∣x∣ +c ⇒z =K∣x∣  let determine the solution on ]0,+∞[  ⇒z =Kx    let use mvc method   z^′  =K^′ x +K  (e) ⇒K^′ x^2  +Kx −Kx =2x ⇒K^′  =(2/x) ⇒K(x) =2lnx +c ⇒  z(x) =(2lnx +c)x =2xlnx +cx  y^′  =z ⇒y^′  =2xln(x)+cx ⇒ y =∫  (2xlnx +cx)dx +λ  =2 ∫ xlnxdx +((cx^2 )/2) +λ  but    ∫ xln(x)dx =_(by parts)     (x^2 /2)ln(x)−∫  (x^2 /2)(dx/x) =(x^2 /2)lnx −(1/2)∫ xdx  =(x^2 /2)lnx−(x^2 /4) ⇒y(x) =x^2 ln(x)−(x^2 /2) +((cx^2 )/2) +λ  y(x) =x^2 ln(x)+((c/2)−(1/2))x^2  +λ .

$${xy}^{''} −{y}^{'} \:=\mathrm{2}{x}\:\:\:{we}\:{use}\:{the}\:{changement}\:{y}^{'} \:={z} \\ $$$$\left({e}\right)\:\Rightarrow{xz}^{'} −{z}\:=\mathrm{2}{x}\:\:\:\:\left({he}\right)\:\rightarrow{xz}^{'} −{z}\:=\mathrm{0}\:\Rightarrow{xz}^{'} \:={z}\:\Rightarrow\frac{{z}^{'} }{{z}}\:=\frac{\mathrm{1}}{{x}}\:\Rightarrow \\ $$$$\left.{ln}\mid{z}\mid\:={ln}\mid{x}\mid\:+{c}\:\Rightarrow{z}\:={K}\mid{x}\mid\:\:{let}\:{determine}\:{the}\:{solution}\:{on}\:\right]\mathrm{0},+\infty\left[\right. \\ $$$$\Rightarrow{z}\:={Kx}\:\:\:\:{let}\:{use}\:{mvc}\:{method}\:\:\:{z}^{'} \:={K}^{'} {x}\:+{K} \\ $$$$\left({e}\right)\:\Rightarrow{K}^{'} {x}^{\mathrm{2}} \:+{Kx}\:−{Kx}\:=\mathrm{2}{x}\:\Rightarrow{K}^{'} \:=\frac{\mathrm{2}}{{x}}\:\Rightarrow{K}\left({x}\right)\:=\mathrm{2}{lnx}\:+{c}\:\Rightarrow \\ $$$${z}\left({x}\right)\:=\left(\mathrm{2}{lnx}\:+{c}\right){x}\:=\mathrm{2}{xlnx}\:+{cx} \\ $$$${y}^{'} \:={z}\:\Rightarrow{y}^{'} \:=\mathrm{2}{xln}\left({x}\right)+{cx}\:\Rightarrow\:{y}\:=\int\:\:\left(\mathrm{2}{xlnx}\:+{cx}\right){dx}\:+\lambda \\ $$$$=\mathrm{2}\:\int\:{xlnxdx}\:+\frac{{cx}^{\mathrm{2}} }{\mathrm{2}}\:+\lambda\:\:{but}\:\: \\ $$$$\int\:{xln}\left({x}\right){dx}\:=_{{by}\:{parts}} \:\:\:\:\frac{{x}^{\mathrm{2}} }{\mathrm{2}}{ln}\left({x}\right)−\int\:\:\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\frac{{dx}}{{x}}\:=\frac{{x}^{\mathrm{2}} }{\mathrm{2}}{lnx}\:−\frac{\mathrm{1}}{\mathrm{2}}\int\:{xdx} \\ $$$$=\frac{{x}^{\mathrm{2}} }{\mathrm{2}}{lnx}−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}\:\Rightarrow{y}\left({x}\right)\:={x}^{\mathrm{2}} {ln}\left({x}\right)−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:+\frac{{cx}^{\mathrm{2}} }{\mathrm{2}}\:+\lambda \\ $$$${y}\left({x}\right)\:={x}^{\mathrm{2}} {ln}\left({x}\right)+\left(\frac{{c}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\right){x}^{\mathrm{2}} \:+\lambda\:. \\ $$

Commented by prof Abdo imad last updated on 27/Aug/19

if  p^2  means (y^′ )^2    i have solved another  equation...

$${if}\:\:{p}^{\mathrm{2}} \:{means}\:\left({y}^{'} \right)^{\mathrm{2}} \:\:\:{i}\:{have}\:{solved}\:{another} \\ $$$${equation}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com