Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 65402 by mathmax by abdo last updated on 29/Jul/19

solve the (de)    (√(x^2 +1))y^(′′)    −xy^′  =x^2 −x

$${solve}\:{the}\:\left({de}\right)\:\:\:\:\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}{y}^{''} \:\:\:−{xy}^{'} \:={x}^{\mathrm{2}} −{x} \\ $$

Commented by mathmax by abdo last updated on 30/Jul/19

let y^′ =z    (e) ⇒(√(x^2 +1))z^′ −xz =x^2 −x  (he) ⇒(√(x^2 +1))z^′ −xz =0 ⇒(√(x^2  +1))z^′ =xz ⇒(z^′ /z) =(x/(√(x^2  +1))) ⇒  ln∣z∣ =(√(x^2  +1 )) +c ⇒z =k e^(√(1+x^2 ))   mvc method give  z^′  =k^′ e^(√(1+x^2 ))  +k  (x/(√(1+x^2 )))e^(√(1+x^2 ))   (e) ⇒(√(1+x^2 ))( k^′  +((kx)/(√(1+x^2 ))))e^(√(1+x^2 )) −xke^(√(1+x^2 ))  =x^2 −x ⇒  (√(1+x^2  ))k^′  e^(√(1+x^2 ))  +kxe^(√(1+x^2 )) −xk e^(√(1+x^2 )) =x^2 −x ⇒  k^′  =((x^2 −x)/(√(1+x^2 ))) e^(−(√(1+x^2 )))   ⇒k(x) =∫   ((x^2 −x)/(√(1+x^2 )))e^(−(√(1+x^2 )))  dx +c ⇒  z(x) =( ∫ ((x^2 −x)/(√(1+x^2 )))e^(−(√(1+x^2 ))) dx +c)e^(√(1+x^2 ))   =e^(√(1+x^2 ))  ∫   ((x^2 −x)/(√(1+x^2 )))e^(−(√(1+x^2 ))) dx  +c e^(√(1+x^2 ))   y^′  =z(x) =⇒y(x) =∫^x z(t)dt +λ  =∫^x  {e^(√(1+t^2 ))  ∫^t  ((u^2 −u)/(√(1+u^2 )))e^(−(√(1+u^2 ))) du  +c e^(√(1+t^2 )) }dt +λ

$${let}\:{y}^{'} ={z}\:\:\:\:\left({e}\right)\:\Rightarrow\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}{z}^{'} −{xz}\:={x}^{\mathrm{2}} −{x} \\ $$$$\left({he}\right)\:\Rightarrow\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}{z}^{'} −{xz}\:=\mathrm{0}\:\Rightarrow\sqrt{{x}^{\mathrm{2}} \:+\mathrm{1}}{z}^{'} ={xz}\:\Rightarrow\frac{{z}^{'} }{{z}}\:=\frac{{x}}{\sqrt{{x}^{\mathrm{2}} \:+\mathrm{1}}}\:\Rightarrow \\ $$$${ln}\mid{z}\mid\:=\sqrt{{x}^{\mathrm{2}} \:+\mathrm{1}\:}\:+{c}\:\Rightarrow{z}\:={k}\:{e}^{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} \\ $$$${mvc}\:{method}\:{give}\:\:{z}^{'} \:={k}^{'} {e}^{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} \:+{k}\:\:\frac{{x}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{e}^{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} \\ $$$$\left({e}\right)\:\Rightarrow\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\left(\:{k}^{'} \:+\frac{{kx}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\right){e}^{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} −{xke}^{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} \:={x}^{\mathrm{2}} −{x}\:\Rightarrow \\ $$$$\sqrt{\mathrm{1}+{x}^{\mathrm{2}} \:}{k}^{'} \:{e}^{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} \:+{kxe}^{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} −{xk}\:{e}^{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} ={x}^{\mathrm{2}} −{x}\:\Rightarrow \\ $$$${k}^{'} \:=\frac{{x}^{\mathrm{2}} −{x}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:{e}^{−\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} \:\:\Rightarrow{k}\left({x}\right)\:=\int\:\:\:\frac{{x}^{\mathrm{2}} −{x}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{e}^{−\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} \:{dx}\:+{c}\:\Rightarrow \\ $$$${z}\left({x}\right)\:=\left(\:\int\:\frac{{x}^{\mathrm{2}} −{x}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{e}^{−\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} {dx}\:+{c}\right){e}^{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} \\ $$$$={e}^{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} \:\int\:\:\:\frac{{x}^{\mathrm{2}} −{x}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{e}^{−\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} {dx}\:\:+{c}\:{e}^{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} \\ $$$${y}^{'} \:={z}\left({x}\right)\:=\Rightarrow{y}\left({x}\right)\:=\int^{{x}} {z}\left({t}\right){dt}\:+\lambda \\ $$$$=\int^{{x}} \:\left\{{e}^{\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }} \:\int^{{t}} \:\frac{{u}^{\mathrm{2}} −{u}}{\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}{e}^{−\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }} {du}\:\:+{c}\:{e}^{\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }} \right\}{dt}\:+\lambda\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com