Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 37296 by math khazana by abdo last updated on 11/Jun/18

solve sinz =2     zfromC

$${solve}\:{sinz}\:=\mathrm{2}\:\:\:\:\:{zfromC} \\ $$$$ \\ $$

Commented by prof Abdo imad last updated on 17/Jun/18

sinz =2 ⇔((e^(iz)  −e^(−iz) )/2) =2 ⇔e^(iz)  −e^(−iz) =4⇒  let t =e^(iz)  ⇒t−(1/t)=4 ⇒t^2 −1=4t ⇒  t^2 −4t−1=0   Δ^′ =4 +1=5 ⇒ t_1 =2+(√5)   and t_2 =2−(√5)  e^(iz) =2+(√5)⇒iz =ln(2+(√5)) ⇒z=−iln(2+(√5))  e^(iz)  =2−(√5) ⇒iz =ln(2−(√5))  =ln(−1) +ln(−2 +(√5)) = iπ +ln(−2+(√5)) ⇒  z =π −iln(−2+(√5)) so the solutions for  this equation are  −iln(2+(√5)) and π −iln(−2+(√5)) .

$${sinz}\:=\mathrm{2}\:\Leftrightarrow\frac{{e}^{{iz}} \:−{e}^{−{iz}} }{\mathrm{2}}\:=\mathrm{2}\:\Leftrightarrow{e}^{{iz}} \:−{e}^{−{iz}} =\mathrm{4}\Rightarrow \\ $$$${let}\:{t}\:={e}^{{iz}} \:\Rightarrow{t}−\frac{\mathrm{1}}{{t}}=\mathrm{4}\:\Rightarrow{t}^{\mathrm{2}} −\mathrm{1}=\mathrm{4}{t}\:\Rightarrow \\ $$$${t}^{\mathrm{2}} −\mathrm{4}{t}−\mathrm{1}=\mathrm{0}\: \\ $$$$\Delta^{'} =\mathrm{4}\:+\mathrm{1}=\mathrm{5}\:\Rightarrow\:{t}_{\mathrm{1}} =\mathrm{2}+\sqrt{\mathrm{5}}\:\:\:{and}\:{t}_{\mathrm{2}} =\mathrm{2}−\sqrt{\mathrm{5}} \\ $$$${e}^{{iz}} =\mathrm{2}+\sqrt{\mathrm{5}}\Rightarrow{iz}\:={ln}\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)\:\Rightarrow{z}=−{iln}\left(\mathrm{2}+\sqrt{\mathrm{5}}\right) \\ $$$${e}^{{iz}} \:=\mathrm{2}−\sqrt{\mathrm{5}}\:\Rightarrow{iz}\:={ln}\left(\mathrm{2}−\sqrt{\mathrm{5}}\right) \\ $$$$={ln}\left(−\mathrm{1}\right)\:+{ln}\left(−\mathrm{2}\:+\sqrt{\mathrm{5}}\right)\:=\:{i}\pi\:+{ln}\left(−\mathrm{2}+\sqrt{\mathrm{5}}\right)\:\Rightarrow \\ $$$${z}\:=\pi\:−{iln}\left(−\mathrm{2}+\sqrt{\mathrm{5}}\right)\:{so}\:{the}\:{solutions}\:{for} \\ $$$${this}\:{equation}\:{are} \\ $$$$−{iln}\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)\:{and}\:\pi\:−{iln}\left(−\mathrm{2}+\sqrt{\mathrm{5}}\right)\:. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com