Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 42304 by maxmathsup by imad last updated on 22/Aug/18

solve in Z^3     x+2y +3z =12  .

$${solve}\:{in}\:{Z}^{\mathrm{3}} \:\:\:\:{x}+\mathrm{2}{y}\:+\mathrm{3}{z}\:=\mathrm{12}\:\:. \\ $$

Commented by maxmathsup by imad last updated on 24/Aug/18

let consider the congruence modulo 3 ( Z/3Z)   (s) ⇒ x^−   +2^−  y^−  +3^− z^−  =12^−  ⇒x^−  −y^−  =0^−  ⇒ x^−  =y^−  ⇒x  =y+3k  k∈Z  (s) ⇒y +3k +2y +3z =12 ⇒3y +3k  +3z =12 ⇒y +z +k =4 ⇒  z =4−y −k    ⇒(x,y,z) =(y+3k ,y ,4−y −k) with k ∈ Z  .

$${let}\:{consider}\:{the}\:{congruence}\:{modulo}\:\mathrm{3}\:\left(\:{Z}/\mathrm{3}{Z}\right)\: \\ $$$$\left({s}\right)\:\Rightarrow\:\overset{−} {{x}}\:\:+\overset{−} {\mathrm{2}}\:\overset{−} {{y}}\:+\overset{−} {\mathrm{3}}\overset{−} {{z}}\:=\mathrm{1}\overset{−} {\mathrm{2}}\:\Rightarrow\overset{−} {{x}}\:−\overset{−} {{y}}\:=\overset{−} {\mathrm{0}}\:\Rightarrow\:\overset{−} {{x}}\:=\overset{−} {{y}}\:\Rightarrow{x}\:\:={y}+\mathrm{3}{k}\:\:{k}\in{Z} \\ $$$$\left({s}\right)\:\Rightarrow{y}\:+\mathrm{3}{k}\:+\mathrm{2}{y}\:+\mathrm{3}{z}\:=\mathrm{12}\:\Rightarrow\mathrm{3}{y}\:+\mathrm{3}{k}\:\:+\mathrm{3}{z}\:=\mathrm{12}\:\Rightarrow{y}\:+{z}\:+{k}\:=\mathrm{4}\:\Rightarrow \\ $$$${z}\:=\mathrm{4}−{y}\:−{k}\:\:\:\:\Rightarrow\left({x},{y},{z}\right)\:=\left({y}+\mathrm{3}{k}\:,{y}\:,\mathrm{4}−{y}\:−{k}\right)\:{with}\:{k}\:\in\:{Z}\:\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com