Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 76439 by mathocean1 last updated on 27/Dec/19

solve in [0;2π[   1+2sin3x≤0

$$\mathrm{solve}\:\mathrm{in}\:\left[\mathrm{0};\mathrm{2}\pi\left[\:\right.\right. \\ $$$$\mathrm{1}+\mathrm{2sin3}{x}\leqslant\mathrm{0} \\ $$

Answered by john santu last updated on 27/Dec/19

sin3x=−(1/2).→x={10^o ,50^o ,130^o ,170^o ,250^o ,290^o }  therefore : 0^o ≤x≤10^o ∪50^o ≤x≤130^o   ∪170^o ≤x≤250^o ∪290^o ≤x≤360^o

$${sin}\mathrm{3}{x}=−\frac{\mathrm{1}}{\mathrm{2}}.\rightarrow{x}=\left\{\mathrm{10}^{{o}} ,\mathrm{50}^{{o}} ,\mathrm{130}^{{o}} ,\mathrm{170}^{{o}} ,\mathrm{250}^{{o}} ,\mathrm{290}^{{o}} \right\} \\ $$$${therefore}\::\:\mathrm{0}^{{o}} \leqslant{x}\leqslant\mathrm{10}^{{o}} \cup\mathrm{50}^{{o}} \leqslant{x}\leqslant\mathrm{130}^{{o}} \\ $$$$\cup\mathrm{170}^{{o}} \leqslant{x}\leqslant\mathrm{250}^{{o}} \cup\mathrm{290}^{{o}} \leqslant{x}\leqslant\mathrm{360}^{{o}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com