Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 206922 by mr W last updated on 01/May/24

solve for x, y, z ∈R^+   x^2 +y^2 −2xy cos γ=c^2   y^2 +z^2 −2yz cos α=a^2   z^2 +x^2 −2zx cos β=b^2   with α+β+γ=360°    example:   a=12, b=8, c=10  α=120°, β=90°, γ=150°

$${solve}\:{for}\:{x},\:{y},\:{z}\:\in{R}^{+} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{xy}\:\mathrm{cos}\:\gamma={c}^{\mathrm{2}} \\ $$$${y}^{\mathrm{2}} +{z}^{\mathrm{2}} −\mathrm{2}{yz}\:\mathrm{cos}\:\alpha={a}^{\mathrm{2}} \\ $$$${z}^{\mathrm{2}} +{x}^{\mathrm{2}} −\mathrm{2}{zx}\:\mathrm{cos}\:\beta={b}^{\mathrm{2}} \\ $$$${with}\:\alpha+\beta+\gamma=\mathrm{360}° \\ $$$$ \\ $$$${example}:\: \\ $$$${a}=\mathrm{12},\:{b}=\mathrm{8},\:{c}=\mathrm{10} \\ $$$$\alpha=\mathrm{120}°,\:\beta=\mathrm{90}°,\:\gamma=\mathrm{150}° \\ $$

Answered by mr W last updated on 01/May/24

Commented by mr W last updated on 01/May/24

Commented by mr W last updated on 01/May/24

∠A=cos^(−1) ((b^2 +c^2 −a^2 )/(2bc))  ∠B=cos^(−1) ((c^2 +a^2 −b^2 )/(2ca))  ∠C=cos^(−1) ((a^2 +b^2 −c^2 )/(2ab))  π−2φ_1 =2π−2α   ⇒φ_1 =α−(π/2)  similarly  φ_2 =β−(π/2)  φ_3 =γ−(π/2)  r_1 =(a/(2 cos φ_1 ))=(a/(2 sin α))  similarly  r_2 =(b/(2 sin β))  r_3 =(c/(2 sin γ))  QR^2 =r_2 ^2 +r_3 ^2 −2r_2 r_3  cos (∠A+φ_2 +φ_3 )  ∠A+φ_2 +φ_3 =∠A+β+γ−π=π−(α−∠A)  QR^2 =(b^2 /(4 sin^2  β))+(c^2 /(4 sin^2  γ))+((bc cos (α−∠A) )/(2 sin β sin γ))  ((x×QR)/2)=r_2 r_3  sin (∠A+φ_2 +φ_3 )=2[AQR]  ((x×QR)/2)=((bc sin (α−∠A))/(4 sin β sin γ))  ⇒x=((bc sin (α−∠A))/(sin β sin γ (√((b^2 /(sin^2  β))+(c^2 /(sin^2  γ))+((2bc cos (α−∠A) )/(sin β sin γ))))))  similarly  ⇒y=((ca sin (β−∠B))/(sin γ sin α (√((c^2 /(sin^2  γ))+(a^2 /(sin^2  α))+((2ca cos (β−∠B) )/(sin γ sin a))))))  ⇒z=((ab sin (γ−∠C))/(sin α sin β (√((a^2 /(sin^2  α))+(b^2 /(sin^2  β))+((2ab cos (γ−∠C) )/(sin α sin β))))))  example:  a=12, b=8, c=10  α=120°, β=90°, γ=150°  cos ∠C=((12^2 +8^2 −10^2 )/(2×12×8))=(9/(16))  sin (γ−∠C)=((9+5(√(21)))/(32))  cos (γ−∠C)=((−9(√3)+5(√7))/(32))  z=((12×8×((9+5(√(21)))/(32)))/(((√3)/2) (√(((12^2 ×4)/3)+8^2 +((2×12×8×2 )/( (√3)))×((−9(√3)+5(√7))/(32))))))    =((9(√3)+15(√7))/( (√(37+5(√(21))))))≈7.141

$$\angle{A}=\mathrm{cos}^{−\mathrm{1}} \frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{a}^{\mathrm{2}} }{\mathrm{2}{bc}} \\ $$$$\angle{B}=\mathrm{cos}^{−\mathrm{1}} \frac{{c}^{\mathrm{2}} +{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{\mathrm{2}{ca}} \\ $$$$\angle{C}=\mathrm{cos}^{−\mathrm{1}} \frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }{\mathrm{2}{ab}} \\ $$$$\pi−\mathrm{2}\phi_{\mathrm{1}} =\mathrm{2}\pi−\mathrm{2}\alpha\: \\ $$$$\Rightarrow\phi_{\mathrm{1}} =\alpha−\frac{\pi}{\mathrm{2}} \\ $$$${similarly} \\ $$$$\phi_{\mathrm{2}} =\beta−\frac{\pi}{\mathrm{2}} \\ $$$$\phi_{\mathrm{3}} =\gamma−\frac{\pi}{\mathrm{2}} \\ $$$${r}_{\mathrm{1}} =\frac{{a}}{\mathrm{2}\:\mathrm{cos}\:\phi_{\mathrm{1}} }=\frac{{a}}{\mathrm{2}\:\mathrm{sin}\:\alpha} \\ $$$${similarly} \\ $$$${r}_{\mathrm{2}} =\frac{{b}}{\mathrm{2}\:\mathrm{sin}\:\beta} \\ $$$${r}_{\mathrm{3}} =\frac{{c}}{\mathrm{2}\:\mathrm{sin}\:\gamma} \\ $$$${QR}^{\mathrm{2}} ={r}_{\mathrm{2}} ^{\mathrm{2}} +{r}_{\mathrm{3}} ^{\mathrm{2}} −\mathrm{2}{r}_{\mathrm{2}} {r}_{\mathrm{3}} \:\mathrm{cos}\:\left(\angle{A}+\phi_{\mathrm{2}} +\phi_{\mathrm{3}} \right) \\ $$$$\angle{A}+\phi_{\mathrm{2}} +\phi_{\mathrm{3}} =\angle{A}+\beta+\gamma−\pi=\pi−\left(\alpha−\angle{A}\right) \\ $$$${QR}^{\mathrm{2}} =\frac{{b}^{\mathrm{2}} }{\mathrm{4}\:\mathrm{sin}^{\mathrm{2}} \:\beta}+\frac{{c}^{\mathrm{2}} }{\mathrm{4}\:\mathrm{sin}^{\mathrm{2}} \:\gamma}+\frac{{bc}\:\mathrm{cos}\:\left(\alpha−\angle{A}\right)\:}{\mathrm{2}\:\mathrm{sin}\:\beta\:\mathrm{sin}\:\gamma} \\ $$$$\frac{{x}×{QR}}{\mathrm{2}}={r}_{\mathrm{2}} {r}_{\mathrm{3}} \:\mathrm{sin}\:\left(\angle{A}+\phi_{\mathrm{2}} +\phi_{\mathrm{3}} \right)=\mathrm{2}\left[{AQR}\right] \\ $$$$\frac{{x}×{QR}}{\mathrm{2}}=\frac{{bc}\:\mathrm{sin}\:\left(\alpha−\angle{A}\right)}{\mathrm{4}\:\mathrm{sin}\:\beta\:\mathrm{sin}\:\gamma} \\ $$$$\Rightarrow{x}=\frac{{bc}\:\mathrm{sin}\:\left(\alpha−\angle{A}\right)}{\mathrm{sin}\:\beta\:\mathrm{sin}\:\gamma\:\sqrt{\frac{{b}^{\mathrm{2}} }{\mathrm{sin}^{\mathrm{2}} \:\beta}+\frac{{c}^{\mathrm{2}} }{\mathrm{sin}^{\mathrm{2}} \:\gamma}+\frac{\mathrm{2}{bc}\:\mathrm{cos}\:\left(\alpha−\angle{A}\right)\:}{\mathrm{sin}\:\beta\:\mathrm{sin}\:\gamma}}} \\ $$$${similarly} \\ $$$$\Rightarrow{y}=\frac{{ca}\:\mathrm{sin}\:\left(\beta−\angle{B}\right)}{\mathrm{sin}\:\gamma\:\mathrm{sin}\:\alpha\:\sqrt{\frac{{c}^{\mathrm{2}} }{\mathrm{sin}^{\mathrm{2}} \:\gamma}+\frac{{a}^{\mathrm{2}} }{\mathrm{sin}^{\mathrm{2}} \:\alpha}+\frac{\mathrm{2}{ca}\:\mathrm{cos}\:\left(\beta−\angle{B}\right)\:}{\mathrm{sin}\:\gamma\:\mathrm{sin}\:{a}}}} \\ $$$$\Rightarrow{z}=\frac{{ab}\:\mathrm{sin}\:\left(\gamma−\angle{C}\right)}{\mathrm{sin}\:\alpha\:\mathrm{sin}\:\beta\:\sqrt{\frac{{a}^{\mathrm{2}} }{\mathrm{sin}^{\mathrm{2}} \:\alpha}+\frac{{b}^{\mathrm{2}} }{\mathrm{sin}^{\mathrm{2}} \:\beta}+\frac{\mathrm{2}{ab}\:\mathrm{cos}\:\left(\gamma−\angle{C}\right)\:}{\mathrm{sin}\:\alpha\:\mathrm{sin}\:\beta}}} \\ $$$${example}: \\ $$$${a}=\mathrm{12},\:{b}=\mathrm{8},\:{c}=\mathrm{10} \\ $$$$\alpha=\mathrm{120}°,\:\beta=\mathrm{90}°,\:\gamma=\mathrm{150}° \\ $$$$\mathrm{cos}\:\angle{C}=\frac{\mathrm{12}^{\mathrm{2}} +\mathrm{8}^{\mathrm{2}} −\mathrm{10}^{\mathrm{2}} }{\mathrm{2}×\mathrm{12}×\mathrm{8}}=\frac{\mathrm{9}}{\mathrm{16}} \\ $$$$\mathrm{sin}\:\left(\gamma−\angle{C}\right)=\frac{\mathrm{9}+\mathrm{5}\sqrt{\mathrm{21}}}{\mathrm{32}} \\ $$$$\mathrm{cos}\:\left(\gamma−\angle{C}\right)=\frac{−\mathrm{9}\sqrt{\mathrm{3}}+\mathrm{5}\sqrt{\mathrm{7}}}{\mathrm{32}} \\ $$$${z}=\frac{\mathrm{12}×\mathrm{8}×\frac{\mathrm{9}+\mathrm{5}\sqrt{\mathrm{21}}}{\mathrm{32}}}{\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\sqrt{\frac{\mathrm{12}^{\mathrm{2}} ×\mathrm{4}}{\mathrm{3}}+\mathrm{8}^{\mathrm{2}} +\frac{\mathrm{2}×\mathrm{12}×\mathrm{8}×\mathrm{2}\:}{\:\sqrt{\mathrm{3}}}×\frac{−\mathrm{9}\sqrt{\mathrm{3}}+\mathrm{5}\sqrt{\mathrm{7}}}{\mathrm{32}}}} \\ $$$$\:\:=\frac{\mathrm{9}\sqrt{\mathrm{3}}+\mathrm{15}\sqrt{\mathrm{7}}}{\:\sqrt{\mathrm{37}+\mathrm{5}\sqrt{\mathrm{21}}}}\approx\mathrm{7}.\mathrm{141} \\ $$

Commented by mr W last updated on 01/May/24

geometrically it is to find the  distances from a point inside a  triangle to the vertexes of the triangle.  when α=β=γ=120°, this point is  the so−called fermat point.

$${geometrically}\:{it}\:{is}\:{to}\:{find}\:{the} \\ $$$${distances}\:{from}\:{a}\:{point}\:{inside}\:{a} \\ $$$${triangle}\:{to}\:{the}\:{vertexes}\:{of}\:{the}\:{triangle}. \\ $$$${when}\:\alpha=\beta=\gamma=\mathrm{120}°,\:{this}\:{point}\:{is} \\ $$$${the}\:{so}−{called}\:{fermat}\:{point}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com