Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 66619 by mr W last updated on 17/Aug/19

solve for x,y∈R  ((√(1+x^2 ))/(ln (x+(√(1+x^2 )))))=((√(1+y^2 ))/(ln (y+(√(1+y^2 )))))

$${solve}\:{for}\:{x},{y}\in{R} \\ $$$$\frac{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{\mathrm{ln}\:\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)}=\frac{\sqrt{\mathrm{1}+{y}^{\mathrm{2}} }}{\mathrm{ln}\:\left({y}+\sqrt{\mathrm{1}+{y}^{\mathrm{2}} }\right)} \\ $$

Answered by Smail last updated on 17/Aug/19

⇔(((sinh^(−1) (x))′)/(sinh^(−1) (x)))=(((sinh^(−1) (y))′)/(sinh^(−1) (y)))  ⇒ln(sinh^(−1) (x))=ln(sinh^(−1) (y))+c  ⇔ln(sinh^(−1) (x))=ln(ksinh^(−1) (y))  sinh^(−1) (x)=ksinh^(−1) (y)  y=sinh(((sinh^(−1) (x))/k))

$$\Leftrightarrow\frac{\left({sinh}^{−\mathrm{1}} \left({x}\right)\right)'}{{sinh}^{−\mathrm{1}} \left({x}\right)}=\frac{\left({sinh}^{−\mathrm{1}} \left({y}\right)\right)'}{{sinh}^{−\mathrm{1}} \left({y}\right)} \\ $$$$\Rightarrow{ln}\left({sinh}^{−\mathrm{1}} \left({x}\right)\right)={ln}\left({sinh}^{−\mathrm{1}} \left({y}\right)\right)+{c} \\ $$$$\Leftrightarrow{ln}\left({sinh}^{−\mathrm{1}} \left({x}\right)\right)={ln}\left({ksinh}^{−\mathrm{1}} \left({y}\right)\right) \\ $$$${sinh}^{−\mathrm{1}} \left({x}\right)={ksinh}^{−\mathrm{1}} \left({y}\right) \\ $$$${y}={sinh}\left(\frac{{sinh}^{−\mathrm{1}} \left({x}\right)}{{k}}\right) \\ $$$$ \\ $$

Commented by mr W last updated on 17/Aug/19

thank you sir!

$${thank}\:{you}\:{sir}! \\ $$

Commented by mr W last updated on 18/Aug/19

but should it not be:  ((ln (x+(√(1+x^2 ))))/(√(1+x^2 )))=((ln (y+(√(1+y^2 ))))/(√(1+y^2 )))  ⇔sinh^(−1)  (x) (sinh^(−1)  (x))′=sinh^(−1)  (y) (sinh^(−1)  (y))′

$${but}\:{should}\:{it}\:{not}\:{be}: \\ $$$$\frac{\mathrm{ln}\:\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}=\frac{\mathrm{ln}\:\left({y}+\sqrt{\mathrm{1}+{y}^{\mathrm{2}} }\right)}{\sqrt{\mathrm{1}+{y}^{\mathrm{2}} }} \\ $$$$\Leftrightarrow\mathrm{sinh}^{−\mathrm{1}} \:\left({x}\right)\:\left(\mathrm{sinh}^{−\mathrm{1}} \:\left({x}\right)\right)'=\mathrm{sinh}^{−\mathrm{1}} \:\left({y}\right)\:\left(\mathrm{sinh}^{−\mathrm{1}} \:\left({y}\right)\right)' \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com