Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 204512 by Ghisom last updated on 20/Feb/24

solve for x∈C  3^(2ix) −3^(ix) 2+5=0

$$\mathrm{solve}\:\mathrm{for}\:{x}\in\mathbb{C} \\ $$$$\mathrm{3}^{\mathrm{2i}{x}} −\mathrm{3}^{\mathrm{i}{x}} \mathrm{2}+\mathrm{5}=\mathrm{0} \\ $$

Answered by Rasheed.Sindhi last updated on 20/Feb/24

(3^(ix) )^2 −2(3^(ix) )+1+4=0  (3^(ix) −1)^2 =−4  3^(ix) −1=±2i  3^(ix) =1±2i  ln(3^(ix) )=ln(1±2i)   x=((ln(1±2i) )/(iln 3 ))   x=−((iln(1±2i) )/(ln 3 ))

$$\left(\mathrm{3}^{{ix}} \right)^{\mathrm{2}} −\mathrm{2}\left(\mathrm{3}^{{ix}} \right)+\mathrm{1}+\mathrm{4}=\mathrm{0} \\ $$$$\left(\mathrm{3}^{{ix}} −\mathrm{1}\right)^{\mathrm{2}} =−\mathrm{4} \\ $$$$\mathrm{3}^{{ix}} −\mathrm{1}=\pm\mathrm{2}{i} \\ $$$$\mathrm{3}^{{ix}} =\mathrm{1}\pm\mathrm{2}{i} \\ $$$$\mathrm{ln}\left(\mathrm{3}^{{ix}} \right)=\mathrm{ln}\left(\mathrm{1}\pm\mathrm{2}{i}\right)\: \\ $$$${x}=\frac{\mathrm{ln}\left(\mathrm{1}\pm\mathrm{2}{i}\right)\:}{{i}\mathrm{ln}\:\mathrm{3}\:}\: \\ $$$${x}=−\frac{{i}\mathrm{ln}\left(\mathrm{1}\pm\mathrm{2}{i}\right)\:}{\mathrm{ln}\:\mathrm{3}\:}\: \\ $$

Commented by Ghisom last updated on 20/Feb/24

thank you

Answered by Frix last updated on 20/Feb/24

With x=a+bi; a, b ∈R we get:  Real part:  (1/9^b )(2cos^2  (aln 3) −3^b 2cos (aln 3) +9^b 5−1)=0  Imaginary part:  (2/9^b )(cos (aln 3) −3^b )sin (aln 3) =0  (1/9^b )≠0 ⇒   { (((1) cos^2  (aln 3) −3^b cos (aln 3) +((9^b 5−1)/2)=0)),(((2) (cos (aln 3) −3^b )sin (aln 3) =0)) :}  (2)  With sin (aln 3) =0 ⇒ b∉R  cos (aln 3) =3^b  ⇒  (1) 9^b =(1/5) ⇒ b=−((ln 5)/(2ln 3))  ⇒ cos (aln 3) =((√5)/5) ⇒ a=((2nπ±cos^(−1)  ((√5)/5))/(ln 3))    x=((2nπ±cos^(−1)  ((√5)/5))/(ln 3))−((ln 5)/(2ln 3))i; n∈Z

$$\mathrm{With}\:{x}={a}+{b}\mathrm{i};\:{a},\:{b}\:\in\mathbb{R}\:\mathrm{we}\:\mathrm{get}: \\ $$$$\mathrm{Real}\:\mathrm{part}: \\ $$$$\frac{\mathrm{1}}{\mathrm{9}^{{b}} }\left(\mathrm{2cos}^{\mathrm{2}} \:\left({a}\mathrm{ln}\:\mathrm{3}\right)\:−\mathrm{3}^{{b}} \mathrm{2cos}\:\left({a}\mathrm{ln}\:\mathrm{3}\right)\:+\mathrm{9}^{{b}} \mathrm{5}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\mathrm{Imaginary}\:\mathrm{part}: \\ $$$$\frac{\mathrm{2}}{\mathrm{9}^{{b}} }\left(\mathrm{cos}\:\left({a}\mathrm{ln}\:\mathrm{3}\right)\:−\mathrm{3}^{{b}} \right)\mathrm{sin}\:\left({a}\mathrm{ln}\:\mathrm{3}\right)\:=\mathrm{0} \\ $$$$\frac{\mathrm{1}}{\mathrm{9}^{{b}} }\neq\mathrm{0}\:\Rightarrow \\ $$$$\begin{cases}{\left(\mathrm{1}\right)\:\mathrm{cos}^{\mathrm{2}} \:\left({a}\mathrm{ln}\:\mathrm{3}\right)\:−\mathrm{3}^{{b}} \mathrm{cos}\:\left({a}\mathrm{ln}\:\mathrm{3}\right)\:+\frac{\mathrm{9}^{{b}} \mathrm{5}−\mathrm{1}}{\mathrm{2}}=\mathrm{0}}\\{\left(\mathrm{2}\right)\:\left(\mathrm{cos}\:\left({a}\mathrm{ln}\:\mathrm{3}\right)\:−\mathrm{3}^{{b}} \right)\mathrm{sin}\:\left({a}\mathrm{ln}\:\mathrm{3}\right)\:=\mathrm{0}}\end{cases} \\ $$$$\left(\mathrm{2}\right) \\ $$$$\mathrm{With}\:\mathrm{sin}\:\left({a}\mathrm{ln}\:\mathrm{3}\right)\:=\mathrm{0}\:\Rightarrow\:{b}\notin\mathbb{R} \\ $$$$\mathrm{cos}\:\left({a}\mathrm{ln}\:\mathrm{3}\right)\:=\mathrm{3}^{{b}} \:\Rightarrow \\ $$$$\left(\mathrm{1}\right)\:\mathrm{9}^{{b}} =\frac{\mathrm{1}}{\mathrm{5}}\:\Rightarrow\:{b}=−\frac{\mathrm{ln}\:\mathrm{5}}{\mathrm{2ln}\:\mathrm{3}} \\ $$$$\Rightarrow\:\mathrm{cos}\:\left({a}\mathrm{ln}\:\mathrm{3}\right)\:=\frac{\sqrt{\mathrm{5}}}{\mathrm{5}}\:\Rightarrow\:{a}=\frac{\mathrm{2}{n}\pi\pm\mathrm{cos}^{−\mathrm{1}} \:\frac{\sqrt{\mathrm{5}}}{\mathrm{5}}}{\mathrm{ln}\:\mathrm{3}} \\ $$$$ \\ $$$${x}=\frac{\mathrm{2}{n}\pi\pm\mathrm{cos}^{−\mathrm{1}} \:\frac{\sqrt{\mathrm{5}}}{\mathrm{5}}}{\mathrm{ln}\:\mathrm{3}}−\frac{\mathrm{ln}\:\mathrm{5}}{\mathrm{2ln}\:\mathrm{3}}\mathrm{i};\:{n}\in\mathbb{Z} \\ $$

Commented by Ghisom last updated on 20/Feb/24

thank you

Terms of Service

Privacy Policy

Contact: info@tinkutara.com