Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 16547 by Sai dadon. last updated on 23/Jun/17

solve  dy/dx + xy=y^2 e^(1/2x^2 ) logx

$${solve} \\ $$$${dy}/{dx}\:+\:{xy}={y}^{\mathrm{2}} {e}^{\mathrm{1}/\mathrm{2}{x}^{\mathrm{2}} } {logx} \\ $$

Commented by Sai dadon. last updated on 23/Jun/17

help

$${help} \\ $$

Commented by prakash jain last updated on 24/Jun/17

u=(1/y)  (du/dx)=−(1/y^2 )(dy/dx)  (dy/dx)=−(1/u^2 )(du/dx)  −(1/u^2 )(du/dx)+(x/u)=(1/u^2 )e^(x^2 /2) ln x  ⇒(du/dx)−ux=e^(x^2 /2) ln x  Integrating factor=exp(∫−xdx)  =e^(−x^2 /2)   u=((∫e^(−x^2 /2) e^(x^2 /2) ln xdx+C)/e^(−x^2 /2) )  u=(((xln x−x)+C)/e^(−x^2 /2) )  y=(1/u)=(e^(−x^2 /2) /(C+(xln x−x)))

$${u}=\frac{\mathrm{1}}{{y}} \\ $$$$\frac{{du}}{{dx}}=−\frac{\mathrm{1}}{{y}^{\mathrm{2}} }\frac{{dy}}{{dx}} \\ $$$$\frac{{dy}}{{dx}}=−\frac{\mathrm{1}}{{u}^{\mathrm{2}} }\frac{{du}}{{dx}} \\ $$$$−\frac{\mathrm{1}}{{u}^{\mathrm{2}} }\frac{{du}}{{dx}}+\frac{{x}}{{u}}=\frac{\mathrm{1}}{{u}^{\mathrm{2}} }{e}^{{x}^{\mathrm{2}} /\mathrm{2}} \mathrm{ln}\:{x} \\ $$$$\Rightarrow\frac{{du}}{{dx}}−{ux}={e}^{{x}^{\mathrm{2}} /\mathrm{2}} \mathrm{ln}\:{x} \\ $$$$\mathrm{Integrating}\:\mathrm{factor}={exp}\left(\int−{xdx}\right) \\ $$$$={e}^{−{x}^{\mathrm{2}} /\mathrm{2}} \\ $$$${u}=\frac{\int{e}^{−{x}^{\mathrm{2}} /\mathrm{2}} {e}^{{x}^{\mathrm{2}} /\mathrm{2}} \mathrm{ln}\:{xdx}+{C}}{{e}^{−{x}^{\mathrm{2}} /\mathrm{2}} } \\ $$$${u}=\frac{\left({x}\mathrm{ln}\:{x}−{x}\right)+{C}}{{e}^{−{x}^{\mathrm{2}} /\mathrm{2}} } \\ $$$${y}=\frac{\mathrm{1}}{{u}}=\frac{{e}^{−{x}^{\mathrm{2}} /\mathrm{2}} }{{C}+\left({x}\mathrm{ln}\:{x}−{x}\right)} \\ $$

Answered by prakash jain last updated on 24/Jun/17

Equations of form  (dy/dx)+yp(x)=y^n q(x)  are called Bernoulli Equation  and can be solved by sunstituting  u=y^(1−n)   See comment for solution of  above equation

$$\mathrm{Equations}\:\mathrm{of}\:\mathrm{form} \\ $$$$\frac{{dy}}{{dx}}+{yp}\left({x}\right)={y}^{{n}} {q}\left({x}\right) \\ $$$$\mathrm{are}\:\mathrm{called}\:\mathrm{Bernoulli}\:\mathrm{Equation} \\ $$$$\mathrm{and}\:\mathrm{can}\:\mathrm{be}\:\mathrm{solved}\:\mathrm{by}\:\mathrm{sunstituting} \\ $$$${u}={y}^{\mathrm{1}−{n}} \\ $$$$\mathrm{See}\:\mathrm{comment}\:\mathrm{for}\:\mathrm{solution}\:\mathrm{of} \\ $$$$\mathrm{above}\:\mathrm{equation} \\ $$

Commented by Sai dadon. last updated on 24/Jun/17

thanks sr

$${thanks}\:{sr} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com