Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 196652 by SANOGO last updated on 28/Aug/23

solve  3x^(3/2)  −4x^(1/2)  +1=0

$${solve} \\ $$$$\mathrm{3}{x}^{\frac{\mathrm{3}}{\mathrm{2}}} \:−\mathrm{4}{x}^{\frac{\mathrm{1}}{\mathrm{2}}} \:+\mathrm{1}=\mathrm{0} \\ $$

Answered by BaliramKumar last updated on 28/Aug/23

  3((√x))^3  − 3(√x) −(√x) +1 = 0  3(√x)[((√x))^2 −1] −( (√x) −1)= 0  3(√x)[((√x)−1)((√x) +1)] −( (√x) −1)= 0  ((√x)−1)[3((√x))^2  +3(√x) − 1]= 0  (√x) − 1 = 0 or 3((√x))^2  + 3(√x) − 1 =0  (√x) = 1         (√x) = ((−3 ± (√(21)))/6)  x = 1            (√x) = ((−3 +(√(21)))/6) or (√x) = ((−3 − (√(21)))/6)  (√x) = (√(((−3 + (√(21)))^2 )/(36)))                               invalid  (√x) = (√(((30 − 6(√(21))))/(36)))   (√x) = (√((5 − (√(21)))/6))   x = ((5 − (√(21)))/6)

$$ \\ $$$$\mathrm{3}\left(\sqrt{{x}}\right)^{\mathrm{3}} \:−\:\mathrm{3}\sqrt{{x}}\:−\sqrt{{x}}\:+\mathrm{1}\:=\:\mathrm{0} \\ $$$$\mathrm{3}\sqrt{{x}}\left[\left(\sqrt{{x}}\right)^{\mathrm{2}} −\mathrm{1}\right]\:−\left(\:\sqrt{{x}}\:−\mathrm{1}\right)=\:\mathrm{0} \\ $$$$\mathrm{3}\sqrt{{x}}\left[\left(\sqrt{{x}}−\mathrm{1}\right)\left(\sqrt{{x}}\:+\mathrm{1}\right)\right]\:−\left(\:\sqrt{{x}}\:−\mathrm{1}\right)=\:\mathrm{0} \\ $$$$\left(\sqrt{{x}}−\mathrm{1}\right)\left[\mathrm{3}\left(\sqrt{{x}}\right)^{\mathrm{2}} \:+\mathrm{3}\sqrt{{x}}\:−\:\mathrm{1}\right]=\:\mathrm{0} \\ $$$$\sqrt{{x}}\:−\:\mathrm{1}\:=\:\mathrm{0}\:{or}\:\mathrm{3}\left(\sqrt{{x}}\right)^{\mathrm{2}} \:+\:\mathrm{3}\sqrt{{x}}\:−\:\mathrm{1}\:=\mathrm{0} \\ $$$$\sqrt{{x}}\:=\:\mathrm{1}\:\:\:\:\:\:\:\:\:\sqrt{{x}}\:=\:\frac{−\mathrm{3}\:\pm\:\sqrt{\mathrm{21}}}{\mathrm{6}} \\ $$$${x}\:=\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\sqrt{{x}}\:=\:\frac{−\mathrm{3}\:+\sqrt{\mathrm{21}}}{\mathrm{6}}\:{or}\:\sqrt{{x}}\:=\:\frac{−\mathrm{3}\:−\:\sqrt{\mathrm{21}}}{\mathrm{6}} \\ $$$$\sqrt{{x}}\:=\:\sqrt{\frac{\left(−\mathrm{3}\:+\:\sqrt{\mathrm{21}}\right)^{\mathrm{2}} }{\mathrm{36}}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{invalid} \\ $$$$\sqrt{{x}}\:=\:\sqrt{\frac{\left(\mathrm{30}\:−\:\mathrm{6}\sqrt{\mathrm{21}}\right)}{\mathrm{36}}}\: \\ $$$$\sqrt{{x}}\:=\:\sqrt{\frac{\mathrm{5}\:−\:\sqrt{\mathrm{21}}}{\mathrm{6}}}\: \\ $$$${x}\:=\:\frac{\mathrm{5}\:−\:\sqrt{\mathrm{21}}}{\mathrm{6}}\: \\ $$

Answered by Frix last updated on 28/Aug/23

3x^(3/2) −4x^(1/2) +1=0  x≥0  Obviously x=1 ★  ⇒  ((√x)−1)(x−(√x)−(1/3))=0  (√x)=(1/2)+((√(21))/6) ★

$$\mathrm{3}{x}^{\frac{\mathrm{3}}{\mathrm{2}}} −\mathrm{4}{x}^{\frac{\mathrm{1}}{\mathrm{2}}} +\mathrm{1}=\mathrm{0} \\ $$$${x}\geqslant\mathrm{0} \\ $$$$\mathrm{Obviously}\:{x}=\mathrm{1}\:\bigstar \\ $$$$\Rightarrow \\ $$$$\left(\sqrt{{x}}−\mathrm{1}\right)\left({x}−\sqrt{{x}}−\frac{\mathrm{1}}{\mathrm{3}}\right)=\mathrm{0} \\ $$$$\sqrt{{x}}=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{21}}}{\mathrm{6}}\:\bigstar \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com