Question Number 196652 by SANOGO last updated on 28/Aug/23 | ||
$${solve} \\ $$$$\mathrm{3}{x}^{\frac{\mathrm{3}}{\mathrm{2}}} \:−\mathrm{4}{x}^{\frac{\mathrm{1}}{\mathrm{2}}} \:+\mathrm{1}=\mathrm{0} \\ $$ | ||
Answered by BaliramKumar last updated on 28/Aug/23 | ||
$$ \\ $$$$\mathrm{3}\left(\sqrt{{x}}\right)^{\mathrm{3}} \:−\:\mathrm{3}\sqrt{{x}}\:−\sqrt{{x}}\:+\mathrm{1}\:=\:\mathrm{0} \\ $$$$\mathrm{3}\sqrt{{x}}\left[\left(\sqrt{{x}}\right)^{\mathrm{2}} −\mathrm{1}\right]\:−\left(\:\sqrt{{x}}\:−\mathrm{1}\right)=\:\mathrm{0} \\ $$$$\mathrm{3}\sqrt{{x}}\left[\left(\sqrt{{x}}−\mathrm{1}\right)\left(\sqrt{{x}}\:+\mathrm{1}\right)\right]\:−\left(\:\sqrt{{x}}\:−\mathrm{1}\right)=\:\mathrm{0} \\ $$$$\left(\sqrt{{x}}−\mathrm{1}\right)\left[\mathrm{3}\left(\sqrt{{x}}\right)^{\mathrm{2}} \:+\mathrm{3}\sqrt{{x}}\:−\:\mathrm{1}\right]=\:\mathrm{0} \\ $$$$\sqrt{{x}}\:−\:\mathrm{1}\:=\:\mathrm{0}\:{or}\:\mathrm{3}\left(\sqrt{{x}}\right)^{\mathrm{2}} \:+\:\mathrm{3}\sqrt{{x}}\:−\:\mathrm{1}\:=\mathrm{0} \\ $$$$\sqrt{{x}}\:=\:\mathrm{1}\:\:\:\:\:\:\:\:\:\sqrt{{x}}\:=\:\frac{−\mathrm{3}\:\pm\:\sqrt{\mathrm{21}}}{\mathrm{6}} \\ $$$${x}\:=\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\sqrt{{x}}\:=\:\frac{−\mathrm{3}\:+\sqrt{\mathrm{21}}}{\mathrm{6}}\:{or}\:\sqrt{{x}}\:=\:\frac{−\mathrm{3}\:−\:\sqrt{\mathrm{21}}}{\mathrm{6}} \\ $$$$\sqrt{{x}}\:=\:\sqrt{\frac{\left(−\mathrm{3}\:+\:\sqrt{\mathrm{21}}\right)^{\mathrm{2}} }{\mathrm{36}}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{invalid} \\ $$$$\sqrt{{x}}\:=\:\sqrt{\frac{\left(\mathrm{30}\:−\:\mathrm{6}\sqrt{\mathrm{21}}\right)}{\mathrm{36}}}\: \\ $$$$\sqrt{{x}}\:=\:\sqrt{\frac{\mathrm{5}\:−\:\sqrt{\mathrm{21}}}{\mathrm{6}}}\: \\ $$$${x}\:=\:\frac{\mathrm{5}\:−\:\sqrt{\mathrm{21}}}{\mathrm{6}}\: \\ $$ | ||
Answered by Frix last updated on 28/Aug/23 | ||
$$\mathrm{3}{x}^{\frac{\mathrm{3}}{\mathrm{2}}} −\mathrm{4}{x}^{\frac{\mathrm{1}}{\mathrm{2}}} +\mathrm{1}=\mathrm{0} \\ $$$${x}\geqslant\mathrm{0} \\ $$$$\mathrm{Obviously}\:{x}=\mathrm{1}\:\bigstar \\ $$$$\Rightarrow \\ $$$$\left(\sqrt{{x}}−\mathrm{1}\right)\left({x}−\sqrt{{x}}−\frac{\mathrm{1}}{\mathrm{3}}\right)=\mathrm{0} \\ $$$$\sqrt{{x}}=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{21}}}{\mathrm{6}}\:\bigstar \\ $$ | ||