Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 171771 by Mikenice last updated on 20/Jun/22

solve:  2^x =4x. find x

$${solve}: \\ $$$$\mathrm{2}^{{x}} =\mathrm{4}{x}.\:{find}\:{x} \\ $$

Answered by mathocean1 last updated on 20/Jun/22

S_R ={4}

$${S}_{\mathbb{R}} =\left\{\mathrm{4}\right\} \\ $$

Answered by mr W last updated on 20/Jun/22

e^(xln 2) =4x  (−xln 2)e^(−xln 2) =−((ln 2)/4)  −xln 2=W(−((ln 2)/4))  ⇒x=−((W(−((ln 2)/4)))/(ln 2))= { (4),((0.3099)) :}

$${e}^{{x}\mathrm{ln}\:\mathrm{2}} =\mathrm{4}{x} \\ $$$$\left(−{x}\mathrm{ln}\:\mathrm{2}\right){e}^{−{x}\mathrm{ln}\:\mathrm{2}} =−\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{4}} \\ $$$$−{x}\mathrm{ln}\:\mathrm{2}={W}\left(−\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{4}}\right) \\ $$$$\Rightarrow{x}=−\frac{{W}\left(−\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{4}}\right)}{\mathrm{ln}\:\mathrm{2}}=\begin{cases}{\mathrm{4}}\\{\mathrm{0}.\mathrm{3099}}\end{cases} \\ $$

Commented by daus last updated on 21/Jun/22

how lambert function works?

$${how}\:{lambert}\:{function}\:{works}? \\ $$

Commented by mr W last updated on 21/Jun/22

Ae^A =B ⇒A=W(B)

$${Ae}^{{A}} ={B}\:\Rightarrow{A}={W}\left({B}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com