Question Number 180785 by Vynho last updated on 17/Nov/22 | ||
![]() | ||
$${solve}\:\left(\mathrm{1}−{x}−{x}^{\mathrm{2}} ...\right)\left(\mathrm{2}−{x}−{x}^{\mathrm{2}} ...\right) \\ $$ | ||
Answered by Rasheed.Sindhi last updated on 17/Nov/22 | ||
![]() | ||
$$\left(\:\mathrm{1}−\left({x}+{x}^{\mathrm{2}} +...\right)\:\right)\left(\:\mathrm{2}−\left({x}+{x}^{\mathrm{2}} +...\right)\:\right) \\ $$$${If}\:\mid{x}\mid<\mathrm{1}: \\ $$$$\left(\mathrm{1}−\frac{{x}}{\mathrm{1}−{x}}\right)\left(\mathrm{2}−\frac{{x}}{\mathrm{1}−{x}}\right) \\ $$$$\frac{\mathrm{1}−{x}−{x}}{\mathrm{1}−{x}}\centerdot\frac{\mathrm{2}−\mathrm{2}{x}−{x}}{\mathrm{1}−{x}} \\ $$$$=\frac{\left(\mathrm{1}−\mathrm{2}{x}\right)\left(\mathrm{2}−\mathrm{3}{x}\right)}{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }=\frac{\mathrm{6}{x}^{\mathrm{2}} −\mathrm{7}{x}+\mathrm{2}}{{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}} \\ $$ | ||
Answered by mr W last updated on 17/Nov/22 | ||
![]() | ||
$${let}\:{t}={x}+{x}^{\mathrm{2}} +...={x}\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +...\right) \\ $$$$\Rightarrow\left(\mathrm{1}−{t}\right)\left(\mathrm{2}−{t}\right)=\mathrm{0} \\ $$$$\Rightarrow{t}=\mathrm{1}\:{or}\:\mathrm{2} \\ $$$$\Rightarrow{x}\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +...\right)=\mathrm{1}\:{or}\:\mathrm{2} \\ $$$$\:{x}<\mathrm{1} \\ $$$$\frac{{x}}{\mathrm{1}−{x}}=\mathrm{1}\:{or}\:\mathrm{2} \\ $$$$\Rightarrow{x}=\frac{\mathrm{1}}{\mathrm{2}}\:{or}\:\frac{\mathrm{2}}{\mathrm{3}} \\ $$ | ||