Question Number 47543 by maxmathsup by imad last updated on 11/Nov/18 | ||
$${solve}\:\left(\mathrm{1}+{ix}\right)^{{n}} ={n}\:\:\:{with}\:{x}\:{unknown}\:{real}\:{and}\:{n}\:{integr}\:{natural}\:. \\ $$ | ||
Answered by arcana last updated on 11/Nov/18 | ||
$${ln}\left({e}^{\left(\mathrm{1}+{ix}\right){n}} \right)={n}\:{ln}\left({e}\:{e}^{{ix}} \right)={n} \\ $$$${ln}\left({e}\right)+{ln}\left({e}^{{ix}} \right)=\mathrm{1}+{ln}\left({e}^{{ix}} \right)=\mathrm{1} \\ $$$${ln}\left({e}^{{ix}} \right)=\mathrm{0}={ln}\left(\mathrm{1}\right)\Rightarrow{e}^{{ix}} ={cos}\left({x}\right)+{isin}\left({x}\right)=\mathrm{1}+{i}\mathrm{0} \\ $$$$\mathrm{si}\:\mathrm{y}\:\mathrm{solo}\:\mathrm{si}\:{cos}\left({x}\right)=\mathrm{1},\:{sin}\left({x}\right)=\mathrm{0} \\ $$$${x}={k}\pi\:\mathrm{con}\:{k}\in\mathbb{Z} \\ $$$$\mathrm{verificar}\:\mathrm{deduccion} \\ $$ | ||
Commented by Smail last updated on 11/Nov/18 | ||
$$\left(\mathrm{1}+{ix}\right)^{{n}} ={ln}\left({e}^{\left(\mathrm{1}+{ix}\right)^{{n}} } \right)\:{not}\:{ln}\left({e}^{\left(\mathrm{1}+{ix}\right){n}} \right) \\ $$$$ \\ $$ | ||
Answered by Smail last updated on 11/Nov/18 | ||
$$\left(\mathrm{1}+{ix}\right)^{{n}} ={ne}^{\mathrm{2}{ik}\pi} \:\:{with}\:{k}=\left(\mathrm{0},\mathrm{1},\mathrm{2},...,{n}−\mathrm{1}\right) \\ $$$$\mathrm{1}+{ix}=\sqrt[{{n}}]{{n}}{e}^{\frac{\mathrm{2}{ik}\pi}{{n}}} \\ $$$$\mathrm{1}+{ix}=\sqrt[{{n}}]{{n}}{cos}\left(\frac{\mathrm{2}{k}\pi}{{n}}\right)+{i}\sqrt[{{n}}]{{n}}{sin}\left(\frac{\mathrm{2}{k}\pi}{{n}}\right) \\ $$$$\sqrt[{{n}}]{{n}}{cos}\left(\frac{\mathrm{2}{k}\pi}{{n}}\right)=\mathrm{1}\:{and}\:\:\sqrt[{{n}}]{{n}}{sin}\left(\frac{\mathrm{2}{k}\pi}{{n}}\right)={x} \\ $$$$\frac{\mathrm{2}{k}\pi}{{n}}={cos}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\sqrt[{{n}}]{{n}}}\right)\:+\mathrm{2}{m}\pi\:{with}\:\:{m}\in{IN} \\ $$$${x}=\sqrt[{{n}}]{{n}}{sin}\left({cos}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\sqrt[{{n}}]{{n}}}\right)+\mathrm{2}{m}\pi\right) \\ $$$$=\sqrt[{{n}}]{{n}}\sqrt{\mathrm{1}−\frac{\mathrm{1}}{\sqrt[{{n}}]{{n}^{\mathrm{2}} }}}=\sqrt{\sqrt[{{n}}]{{n}^{\mathrm{2}} }−\mathrm{1}} \\ $$$${x}=\sqrt{\sqrt[{{n}}]{{n}^{\mathrm{2}} }−\mathrm{1}} \\ $$$$ \\ $$ | ||