Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 167696 by bounhome last updated on 23/Mar/22

solv:    e^x +x+1=0

$${solv}:\:\: \\ $$$${e}^{{x}} +{x}+\mathrm{1}=\mathrm{0} \\ $$

Answered by mr W last updated on 23/Mar/22

e^x =−(x+1)  e^(x+1) =−e(x+1)  −(x+1)e^(−(x+1)) =(1/e)  −(x+1)=W((1/e))  ⇒x=−1−W((1/e))≈−1.278465

$${e}^{{x}} =−\left({x}+\mathrm{1}\right) \\ $$$${e}^{{x}+\mathrm{1}} =−{e}\left({x}+\mathrm{1}\right) \\ $$$$−\left({x}+\mathrm{1}\right){e}^{−\left({x}+\mathrm{1}\right)} =\frac{\mathrm{1}}{{e}} \\ $$$$−\left({x}+\mathrm{1}\right)={W}\left(\frac{\mathrm{1}}{{e}}\right) \\ $$$$\Rightarrow{x}=−\mathrm{1}−{W}\left(\frac{\mathrm{1}}{{e}}\right)\approx−\mathrm{1}.\mathrm{278465} \\ $$

Commented by essojean last updated on 25/Mar/22

Que represente W???

$${Que}\:{represente}\:{W}??? \\ $$

Commented by mr W last updated on 25/Mar/22

Lambert W function

$${Lambert}\:{W}\:{function} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com