Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 145442 by ArielVyny last updated on 04/Jul/21

soit z∈C montrer que cos(z) et sin (z)  ne sont pas bornees  que vaut sin^2 (z)+cos^2 (z)=??

$${soit}\:{z}\in\mathbb{C}\:{montrer}\:{que}\:{cos}\left({z}\right)\:{et}\:{sin}\:\left({z}\right) \\ $$$${ne}\:{sont}\:{pas}\:{bornees} \\ $$$${que}\:{vaut}\:{sin}^{\mathrm{2}} \left({z}\right)+{cos}^{\mathrm{2}} \left({z}\right)=?? \\ $$

Answered by Olaf_Thorendsen last updated on 05/Jul/21

cos(iy) = ((e^(i(iy)) +e^(−i(iy)) )/2) = ((e^(−y) +e^y )/2) = chy  sin(iy) = ((e^(i(iy)) −e^(−i(iy)) )/(2i)) = ((e^(−y) −e^y )/(2i)) = ishy    cosz = cos(x+iy)  cosz = cosxcos(iy)−sinxsin(iy)  cosz = cosxchy−isinxshy  cosz non borne a cause de chy et shy    sinz = sin(x+iy)  sinz = sinxcos(iy)+cosxsin(iy)  sinz = sinxchy+icosxshy  sinz non borne a cause de chy et shy    cos^2 z = (cosxchy−isinxshy)^2   cos^2 z = cos^2 xch^2 y−sin^2 xsh^2 y  −2icosxsinxchyshy    sin^2 z = (sinxchy+icosxshy)^2   sin^2 z = sin^2 xch^2 y−cos^2 xsh^2 y  +2icosxsinxchyshy    cos^2 z+sin^2 z = cos^2 xch^2 y−sin^2 xsh^2 y  +sin^2 xch^2 y−cos^2 xsh^2 y  cos^2 z+sin^2 z = (ch^2 y−sh^2 y)(cos^2 x+sin^2 x)  cos^2 z+sin^2 z = 1×1 = 1  On retrouve la meme relation  fondamentale que pour les reels.

$$\mathrm{cos}\left({iy}\right)\:=\:\frac{{e}^{{i}\left({iy}\right)} +{e}^{−{i}\left({iy}\right)} }{\mathrm{2}}\:=\:\frac{{e}^{−{y}} +{e}^{{y}} }{\mathrm{2}}\:=\:\mathrm{ch}{y} \\ $$$$\mathrm{sin}\left({iy}\right)\:=\:\frac{{e}^{{i}\left({iy}\right)} −{e}^{−{i}\left({iy}\right)} }{\mathrm{2}{i}}\:=\:\frac{{e}^{−{y}} −{e}^{{y}} }{\mathrm{2}{i}}\:=\:{i}\mathrm{sh}{y} \\ $$$$ \\ $$$$\mathrm{cos}{z}\:=\:\mathrm{cos}\left({x}+{iy}\right) \\ $$$$\mathrm{cos}{z}\:=\:\mathrm{cos}{x}\mathrm{cos}\left({iy}\right)−\mathrm{sin}{x}\mathrm{sin}\left({iy}\right) \\ $$$$\mathrm{cos}{z}\:=\:\mathrm{cos}{x}\mathrm{ch}{y}−{i}\mathrm{sin}{x}\mathrm{sh}{y} \\ $$$$\mathrm{cos}{z}\:\mathrm{non}\:\mathrm{borne}\:\mathrm{a}\:\mathrm{cause}\:\mathrm{de}\:\mathrm{ch}{y}\:\mathrm{et}\:\mathrm{sh}{y} \\ $$$$ \\ $$$$\mathrm{sin}{z}\:=\:\mathrm{sin}\left({x}+{iy}\right) \\ $$$$\mathrm{sin}{z}\:=\:\mathrm{sin}{x}\mathrm{cos}\left({iy}\right)+\mathrm{cos}{x}\mathrm{sin}\left({iy}\right) \\ $$$$\mathrm{sin}{z}\:=\:\mathrm{sin}{x}\mathrm{ch}{y}+{i}\mathrm{cos}{x}\mathrm{sh}{y} \\ $$$$\mathrm{sin}{z}\:\mathrm{non}\:\mathrm{borne}\:\mathrm{a}\:\mathrm{cause}\:\mathrm{de}\:\mathrm{ch}{y}\:\mathrm{et}\:\mathrm{sh}{y} \\ $$$$ \\ $$$$\mathrm{cos}^{\mathrm{2}} {z}\:=\:\left(\mathrm{cos}{x}\mathrm{ch}{y}−{i}\mathrm{sin}{x}\mathrm{sh}{y}\right)^{\mathrm{2}} \\ $$$$\mathrm{cos}^{\mathrm{2}} {z}\:=\:\mathrm{cos}^{\mathrm{2}} {x}\mathrm{ch}^{\mathrm{2}} {y}−\mathrm{sin}^{\mathrm{2}} {x}\mathrm{sh}^{\mathrm{2}} {y} \\ $$$$−\mathrm{2}{i}\mathrm{cos}{x}\mathrm{sin}{x}\mathrm{ch}{y}\mathrm{sh}{y} \\ $$$$ \\ $$$$\mathrm{sin}^{\mathrm{2}} {z}\:=\:\left(\mathrm{sin}{x}\mathrm{ch}{y}+{i}\mathrm{cos}{x}\mathrm{sh}{y}\right)^{\mathrm{2}} \\ $$$$\mathrm{sin}^{\mathrm{2}} {z}\:=\:\mathrm{sin}^{\mathrm{2}} {x}\mathrm{ch}^{\mathrm{2}} {y}−\mathrm{cos}^{\mathrm{2}} {x}\mathrm{sh}^{\mathrm{2}} {y} \\ $$$$+\mathrm{2}{i}\mathrm{cos}{x}\mathrm{sin}{x}\mathrm{ch}{y}\mathrm{sh}{y} \\ $$$$ \\ $$$$\mathrm{cos}^{\mathrm{2}} {z}+\mathrm{sin}^{\mathrm{2}} {z}\:=\:\mathrm{cos}^{\mathrm{2}} {x}\mathrm{ch}^{\mathrm{2}} {y}−\mathrm{sin}^{\mathrm{2}} {x}\mathrm{sh}^{\mathrm{2}} {y} \\ $$$$+\mathrm{sin}^{\mathrm{2}} {x}\mathrm{ch}^{\mathrm{2}} {y}−\mathrm{cos}^{\mathrm{2}} {x}\mathrm{sh}^{\mathrm{2}} {y} \\ $$$$\mathrm{cos}^{\mathrm{2}} {z}+\mathrm{sin}^{\mathrm{2}} {z}\:=\:\left(\mathrm{ch}^{\mathrm{2}} {y}−\mathrm{sh}^{\mathrm{2}} {y}\right)\left(\mathrm{cos}^{\mathrm{2}} {x}+\mathrm{sin}^{\mathrm{2}} {x}\right) \\ $$$$\mathrm{cos}^{\mathrm{2}} {z}+\mathrm{sin}^{\mathrm{2}} {z}\:=\:\mathrm{1}×\mathrm{1}\:=\:\mathrm{1} \\ $$$$\mathrm{On}\:\mathrm{retrouve}\:\mathrm{la}\:\mathrm{meme}\:\mathrm{relation} \\ $$$$\mathrm{fondamentale}\:\mathrm{que}\:\mathrm{pour}\:\mathrm{les}\:\mathrm{reels}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com