Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 166379 by SANOGO last updated on 19/Feb/22

soit{_(u_1 =4) ^(u_o =1)   ∀nεN  montrer par reccurence  que:  U_(n+2) =2U_(n+1) −U_n

$${soit}\left\{_{{u}_{\mathrm{1}} =\mathrm{4}} ^{{u}_{{o}} =\mathrm{1}} \:\:\forall{n}\epsilon{N}\right. \\ $$$${montrer}\:{par}\:{reccurence}\:\:{que}: \\ $$$${U}_{{n}+\mathrm{2}} =\mathrm{2}{U}_{{n}+\mathrm{1}} −{U}_{{n}} \\ $$

Answered by qaz last updated on 19/Feb/22

U_(n+2) =2U_(n+1) −U_n   ⇒λ^2 −2λ+1=0  ⇒λ_1 =λ_2 =1  ⇒U_n =C_1 +nC_2   U_0 =1 Λ U_1 =4  ⇒U_n =1+3n

$$\mathrm{U}_{\mathrm{n}+\mathrm{2}} =\mathrm{2U}_{\mathrm{n}+\mathrm{1}} −\mathrm{U}_{\mathrm{n}} \\ $$$$\Rightarrow\lambda^{\mathrm{2}} −\mathrm{2}\lambda+\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\lambda_{\mathrm{1}} =\lambda_{\mathrm{2}} =\mathrm{1} \\ $$$$\Rightarrow\mathrm{U}_{\mathrm{n}} =\mathrm{C}_{\mathrm{1}} +\mathrm{nC}_{\mathrm{2}} \\ $$$$\mathrm{U}_{\mathrm{0}} =\mathrm{1}\:\Lambda\:\mathrm{U}_{\mathrm{1}} =\mathrm{4} \\ $$$$\Rightarrow\mathrm{U}_{\mathrm{n}} =\mathrm{1}+\mathrm{3n} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com