Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 196913 by ERLY last updated on 02/Sep/23

soit {_(r_(n+1) =r_n /(2+r_n ^2 )) ^(r_0 =1)   demontrer sans recurrence que r_n >0  demontrer par recurrence que r_(n+1) ≤(1/2)r_n   demontrer sans recurrence que r_n ≤((1/2))^n   •erly rolvinst•

$${soit}\:\left\{_{{r}_{{n}+\mathrm{1}} ={r}_{{n}} /\left(\mathrm{2}+{r}_{{n}} ^{\mathrm{2}} \right)} ^{{r}_{\mathrm{0}} =\mathrm{1}} \right. \\ $$$${demontrer}\:{sans}\:{recurrence}\:{que}\:{r}_{{n}} >\mathrm{0} \\ $$$${demontrer}\:{par}\:{recurrence}\:{que}\:{r}_{{n}+\mathrm{1}} \leq\frac{\mathrm{1}}{\mathrm{2}}{r}_{{n}} \\ $$$${demontrer}\:{sans}\:{recurrence}\:{que}\:{r}_{{n}} \leq\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} \\ $$$$\bullet{erly}\:{rolvinst}\bullet \\ $$

Answered by aleks041103 last updated on 03/Oct/23

1.  by induction  r_0 =1>0  let r_k >0, for some k∈N  r_(k+1) =(r_k /(2+r_k ^2 ))>0  ⇒r_n >0  2.  2+r_n ^2 ≥2⇒(1/2)≥(1/(2+r_n ^2 ))  r_n >0⇒(r_n /2)≥(r_n /(2+r_n ^2 ))=r_(n+1)   ⇒r_(n+1) ≤(1/2)r_n  → geometric progression  3.  ⇒r_n ≤((1/2))^n r_0 =((1/2))^n     4.  0<r_n ≤((1/2))^n   ⇒lim_(n→∞)  0 ≤lim_(n→∞)  r_n ≤lim_(n→∞) ((1/2))^n   ⇒lim_(n→∞)  r_n =0

$$\mathrm{1}. \\ $$$${by}\:{induction} \\ $$$${r}_{\mathrm{0}} =\mathrm{1}>\mathrm{0} \\ $$$${let}\:{r}_{{k}} >\mathrm{0},\:{for}\:{some}\:{k}\in\mathbb{N} \\ $$$${r}_{{k}+\mathrm{1}} =\frac{{r}_{{k}} }{\mathrm{2}+{r}_{{k}} ^{\mathrm{2}} }>\mathrm{0} \\ $$$$\Rightarrow{r}_{{n}} >\mathrm{0} \\ $$$$\mathrm{2}. \\ $$$$\mathrm{2}+{r}_{{n}} ^{\mathrm{2}} \geqslant\mathrm{2}\Rightarrow\frac{\mathrm{1}}{\mathrm{2}}\geqslant\frac{\mathrm{1}}{\mathrm{2}+{r}_{{n}} ^{\mathrm{2}} } \\ $$$${r}_{{n}} >\mathrm{0}\Rightarrow\frac{{r}_{{n}} }{\mathrm{2}}\geqslant\frac{{r}_{{n}} }{\mathrm{2}+{r}_{{n}} ^{\mathrm{2}} }={r}_{{n}+\mathrm{1}} \\ $$$$\Rightarrow{r}_{{n}+\mathrm{1}} \leqslant\frac{\mathrm{1}}{\mathrm{2}}{r}_{{n}} \:\rightarrow\:{geometric}\:{progression} \\ $$$$\mathrm{3}. \\ $$$$\Rightarrow{r}_{{n}} \leqslant\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} {r}_{\mathrm{0}} =\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} \\ $$$$ \\ $$$$\mathrm{4}. \\ $$$$\mathrm{0}<{r}_{{n}} \leqslant\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} \\ $$$$\Rightarrow\underset{{n}\rightarrow\infty} {{lim}}\:\mathrm{0}\:\leqslant\underset{{n}\rightarrow\infty} {{lim}}\:{r}_{{n}} \leqslant\underset{{n}\rightarrow\infty} {{lim}}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} \\ $$$$\Rightarrow\underset{{n}\rightarrow\infty} {{lim}}\:{r}_{{n}} =\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com