Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 129759 by mohammad17 last updated on 18/Jan/21

since f(z)=(√(z−1)) find f^(−1) (z) ?

$${since}\:{f}\left({z}\right)=\sqrt{{z}−\mathrm{1}}\:{find}\:{f}^{−\mathrm{1}} \left({z}\right)\:? \\ $$

Answered by I want to learn more last updated on 18/Jan/21

y  =  (√(z  −  1))     y^2    =   z  −  1        y^2   +  1  =  z             z   =   y^2   +  1             f^(− 1) (z)   =   z^2   +  1

$$\mathrm{y}\:\:=\:\:\sqrt{\mathrm{z}\:\:−\:\:\mathrm{1}} \\ $$$$\:\:\:\mathrm{y}^{\mathrm{2}} \:\:\:=\:\:\:\mathrm{z}\:\:−\:\:\mathrm{1} \\ $$$$\:\:\:\:\:\:\mathrm{y}^{\mathrm{2}} \:\:+\:\:\mathrm{1}\:\:=\:\:\mathrm{z} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{z}\:\:\:=\:\:\:\mathrm{y}^{\mathrm{2}} \:\:+\:\:\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{f}^{−\:\mathrm{1}} \left(\mathrm{z}\right)\:\:\:=\:\:\:\mathrm{z}^{\mathrm{2}} \:\:+\:\:\mathrm{1} \\ $$

Commented by Olaf last updated on 18/Jan/21

only for z ≥ 0 sir.  D_f  = [1;+∞[ and D_f^(−1)   = [0;+∞[

$$\mathrm{only}\:\mathrm{for}\:{z}\:\geqslant\:\mathrm{0}\:\mathrm{sir}. \\ $$$$\mathscr{D}_{{f}} \:=\:\left[\mathrm{1};+\infty\left[\:\mathrm{and}\:\mathscr{D}_{{f}^{−\mathrm{1}} } \:=\:\left[\mathrm{0};+\infty\left[\right.\right.\right.\right. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com