Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 118442 by bramlexs22 last updated on 17/Oct/20

  sin x.y′′ +2cos x. y′−y sin x = e^x

$$\:\:\mathrm{sin}\:{x}.{y}''\:+\mathrm{2cos}\:{x}.\:{y}'−{y}\:\mathrm{sin}\:{x}\:=\:{e}^{{x}} \\ $$$$ \\ $$

Answered by john santu last updated on 17/Oct/20

 To solve it, we write it first as   (sin x.y′′+cos x.y′ )+ (cos x.y′ −sin x)= e^x   by the product rule , the first two  term in parentheses are the derivative  of sin x.y′ , while the second two   are the derivative of cos x.y . Then  the equation can be written as  (d/(dx ))( sin x.y′+ cos x.y ) = e^x    ⇒ sin x. y′ + cos x.y = e^x  + C_1   ⇒(d/dx) (sin x.y ) = e^x  + C_1   ⇒ sin x. y = e^x  + C_1 x + C_2   ⇒ y = ((e^x  + C_1 x + C_2 )/(sin x))

$$\:{To}\:{solve}\:{it},\:{we}\:{write}\:{it}\:{first}\:{as}\: \\ $$$$\left(\mathrm{sin}\:{x}.{y}''+\mathrm{cos}\:{x}.{y}'\:\right)+\:\left(\mathrm{cos}\:{x}.{y}'\:−\mathrm{sin}\:{x}\right)=\:{e}^{{x}} \\ $$$${by}\:{the}\:{product}\:{rule}\:,\:{the}\:{first}\:{two} \\ $$$${term}\:{in}\:{parentheses}\:{are}\:{the}\:{derivative} \\ $$$${of}\:\mathrm{sin}\:{x}.{y}'\:,\:{while}\:{the}\:{second}\:{two}\: \\ $$$${are}\:{the}\:{derivative}\:{of}\:\mathrm{cos}\:{x}.{y}\:.\:{Then} \\ $$$${the}\:{equation}\:{can}\:{be}\:{written}\:{as} \\ $$$$\frac{{d}}{{dx}\:}\left(\:\mathrm{sin}\:{x}.{y}'+\:\mathrm{cos}\:{x}.{y}\:\right)\:=\:{e}^{{x}} \: \\ $$$$\Rightarrow\:\mathrm{sin}\:{x}.\:{y}'\:+\:\mathrm{cos}\:{x}.{y}\:=\:{e}^{{x}} \:+\:{C}_{\mathrm{1}} \\ $$$$\Rightarrow\frac{{d}}{{dx}}\:\left(\mathrm{sin}\:{x}.{y}\:\right)\:=\:{e}^{{x}} \:+\:{C}_{\mathrm{1}} \\ $$$$\Rightarrow\:\mathrm{sin}\:{x}.\:{y}\:=\:{e}^{{x}} \:+\:{C}_{\mathrm{1}} {x}\:+\:{C}_{\mathrm{2}} \\ $$$$\Rightarrow\:{y}\:=\:\frac{{e}^{{x}} \:+\:{C}_{\mathrm{1}} {x}\:+\:{C}_{\mathrm{2}} }{\mathrm{sin}\:{x}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com