Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 5487 by love math last updated on 16/May/16

∫sin x ln (tan x) dx    ∫x^n ln x dx         (n≠−1)    ∫(x^2 /(√(x^2 −2)))dx    ∫x sin 2x dx

$$\int{sin}\:{x}\:{ln}\:\left({tan}\:{x}\right)\:{dx} \\ $$$$ \\ $$$$\int{x}^{{n}} {ln}\:{x}\:{dx}\:\:\:\:\:\:\:\:\:\left({n}\neq−\mathrm{1}\right) \\ $$$$ \\ $$$$\int\frac{{x}^{\mathrm{2}} }{\sqrt{{x}^{\mathrm{2}} −\mathrm{2}}}{dx} \\ $$$$ \\ $$$$\int{x}\:{sin}\:\mathrm{2}{x}\:{dx} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Answered by nchejane last updated on 16/May/16

1.∫sinx ln(tanx)dx  =−cosxln(tanx) +∫cos x ((sec x)/(tan x))dx  =−cos x ln(tan x)+∫((cos x)/(sin x))dx  =−cos x ln(tan x)+ln(sin x)+c    2.∫x^n ln xdx=(x^(n+1) /(n+1))lnx−(1/(n+1))∫x^(n+1) (1/x)dx  =(x^(n+1) /(n+1))lnx−(1/(n+1))×(x^(n+1) /(n+1))+k (n≠−1)    3.∫(x^2 /(√(x^2 −2)))dx=(√2)∫sec^3 u tanu(1/(√(2(sec^2 u−1))))du (let x=sec u=>dx=sec u tan u du)  =∫sec^3  u  du=...      4.∫x sin 2xdx=−(x/2)cos 2x+(1/2)∫cos 2x dx  =−(x/2)cos 2x+((sin 2x)/4)+k

$$\mathrm{1}.\int\mathrm{sin}{x}\:{ln}\left({tanx}\right){dx} \\ $$$$=−{cosxln}\left({tanx}\right)\:+\int{cos}\:{x}\:\frac{{sec}\:{x}}{{tan}\:{x}}{dx} \\ $$$$=−{cos}\:{x}\:{ln}\left({tan}\:{x}\right)+\int\frac{{cos}\:{x}}{{sin}\:{x}}{dx} \\ $$$$=−{cos}\:{x}\:{ln}\left({tan}\:{x}\right)+{ln}\left({sin}\:{x}\right)+{c} \\ $$$$ \\ $$$$\mathrm{2}.\int{x}^{{n}} {ln}\:{xdx}=\frac{{x}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}{lnx}−\frac{\mathrm{1}}{{n}+\mathrm{1}}\int{x}^{{n}+\mathrm{1}} \frac{\mathrm{1}}{{x}}{dx} \\ $$$$=\frac{{x}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}{lnx}−\frac{\mathrm{1}}{{n}+\mathrm{1}}×\frac{{x}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}+{k}\:\left({n}\neq−\mathrm{1}\right) \\ $$$$ \\ $$$$\mathrm{3}.\int\frac{{x}^{\mathrm{2}} }{\sqrt{{x}^{\mathrm{2}} −\mathrm{2}}}{dx}=\sqrt{\mathrm{2}}\int{sec}^{\mathrm{3}} {u}\:{tanu}\frac{\mathrm{1}}{\sqrt{\mathrm{2}\left({sec}^{\mathrm{2}} {u}−\mathrm{1}\right)}}{du}\:\left({let}\:{x}={sec}\:{u}=>{dx}={sec}\:{u}\:{tan}\:{u}\:{du}\right) \\ $$$$=\int{sec}^{\mathrm{3}} \:{u}\:\:{du}=... \\ $$$$ \\ $$$$ \\ $$$$\mathrm{4}.\int{x}\:{sin}\:\mathrm{2}{xdx}=−\frac{{x}}{\mathrm{2}}{cos}\:\mathrm{2}{x}+\frac{\mathrm{1}}{\mathrm{2}}\int{cos}\:\mathrm{2}{x}\:{dx} \\ $$$$=−\frac{{x}}{\mathrm{2}}{cos}\:\mathrm{2}{x}+\frac{{sin}\:\mathrm{2}{x}}{\mathrm{4}}+{k} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com