Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 210593 by efronzo1 last updated on 13/Aug/24

  ∫ ((sin x cos x)/( ((cos 2x))^(1/3)  + (√(cos 2x)))) dx =?    ∫ (dx/(sec x ((sin x))^(1/2)  + cos x ((cosec^5 x))^(1/3) )) =?

$$\:\:\int\:\frac{\mathrm{sin}\:\mathrm{x}\:\mathrm{cos}\:\mathrm{x}}{\:\sqrt[{\mathrm{3}}]{\mathrm{cos}\:\mathrm{2x}}\:+\:\sqrt{\mathrm{cos}\:\mathrm{2x}}}\:\mathrm{dx}\:=? \\ $$$$\:\:\int\:\frac{\mathrm{dx}}{\mathrm{sec}\:\mathrm{x}\:\sqrt[{\mathrm{2}}]{\mathrm{sin}\:\mathrm{x}}\:+\:\mathrm{cos}\:\mathrm{x}\:\sqrt[{\mathrm{3}}]{\mathrm{cosec}\:^{\mathrm{5}} \mathrm{x}}}\:=? \\ $$

Answered by Sutrisno last updated on 30/Aug/24

misal  cos2x=y^6   −2sin2xdx=6y^5 dy  dx=((6y^5 )/(−4sinxcosx))dy  =∫((sinxcosx)/( (y^6 )^(1/3) +(√y^6 ))).((6y^5 )/(−4sinxcosx))dy  =−(3/2)∫(y^5 /( y^2 +y^3 ))dy  =−(3/2)∫(y^3 /( 1+y))dy  =−(3/2)∫(((y−1)^3 )/( y))dy  =−(3/2)∫((y^3 −3y^2 +3y−1)/( y))dy  =−(3/2)∫y^2 −3y+3−(1/y)dy  =−(3/2)((1/3)y^3 −(3/2)y^2 +3y−lny)+c  =−(3/2)((1/3)(((cos2x))^(1/6) )^3 −(3/2)(((cos2x))^(1/6) )^2 +3((cos2x))^(1/6) −ln((cos2x))^(1/6) )+c  =−(3/2)((1/3)(√(cos2x))−(3/2)((cos2x))^(1/3) +3((cos2x))^(1/6) −ln((cos2x))^(1/6) )+c

$${misal} \\ $$$${cos}\mathrm{2}{x}={y}^{\mathrm{6}} \\ $$$$−\mathrm{2}{sin}\mathrm{2}{xdx}=\mathrm{6}{y}^{\mathrm{5}} {dy} \\ $$$${dx}=\frac{\mathrm{6}{y}^{\mathrm{5}} }{−\mathrm{4}{sinxcosx}}{dy} \\ $$$$=\int\frac{{sinxcosx}}{\:\sqrt[{\mathrm{3}}]{{y}^{\mathrm{6}} }+\sqrt{{y}^{\mathrm{6}} }}.\frac{\mathrm{6}{y}^{\mathrm{5}} }{−\mathrm{4}{sinxcosx}}{dy} \\ $$$$=−\frac{\mathrm{3}}{\mathrm{2}}\int\frac{{y}^{\mathrm{5}} }{\:{y}^{\mathrm{2}} +{y}^{\mathrm{3}} }{dy} \\ $$$$=−\frac{\mathrm{3}}{\mathrm{2}}\int\frac{{y}^{\mathrm{3}} }{\:\mathrm{1}+{y}}{dy} \\ $$$$=−\frac{\mathrm{3}}{\mathrm{2}}\int\frac{\left({y}−\mathrm{1}\right)^{\mathrm{3}} }{\:{y}}{dy} \\ $$$$=−\frac{\mathrm{3}}{\mathrm{2}}\int\frac{{y}^{\mathrm{3}} −\mathrm{3}{y}^{\mathrm{2}} +\mathrm{3}{y}−\mathrm{1}}{\:{y}}{dy} \\ $$$$=−\frac{\mathrm{3}}{\mathrm{2}}\int{y}^{\mathrm{2}} −\mathrm{3}{y}+\mathrm{3}−\frac{\mathrm{1}}{{y}}{dy} \\ $$$$=−\frac{\mathrm{3}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{3}}{y}^{\mathrm{3}} −\frac{\mathrm{3}}{\mathrm{2}}{y}^{\mathrm{2}} +\mathrm{3}{y}−{lny}\right)+{c} \\ $$$$=−\frac{\mathrm{3}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{3}}\left(\sqrt[{\mathrm{6}}]{{cos}\mathrm{2}{x}}\right)^{\mathrm{3}} −\frac{\mathrm{3}}{\mathrm{2}}\left(\sqrt[{\mathrm{6}}]{{cos}\mathrm{2}{x}}\right)^{\mathrm{2}} +\mathrm{3}\sqrt[{\mathrm{6}}]{{cos}\mathrm{2}{x}}−{ln}\sqrt[{\mathrm{6}}]{{cos}\mathrm{2}{x}}\right)+{c} \\ $$$$=−\frac{\mathrm{3}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{3}}\sqrt{{cos}\mathrm{2}{x}}−\frac{\mathrm{3}}{\mathrm{2}}\sqrt[{\mathrm{3}}]{{cos}\mathrm{2}{x}}+\mathrm{3}\sqrt[{\mathrm{6}}]{{cos}\mathrm{2}{x}}−{ln}\sqrt[{\mathrm{6}}]{{cos}\mathrm{2}{x}}\right)+{c} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com