Question and Answers Forum

All Questions      Topic List

Set Theory Questions

Previous in All Question      Next in All Question      

Previous in Set Theory      Next in Set Theory      

Question Number 129634 by abdurehime last updated on 17/Jan/21

sin^  x+cos^  x=1 proof by step by step or by showing all steps   b/c it is my assignment

$$\boldsymbol{{sin}}^{ } \boldsymbol{{x}}+\boldsymbol{{cos}}^{ } \boldsymbol{{x}}=\mathrm{1}\:\mathrm{proof}\:\mathrm{by}\:\mathrm{step}\:\mathrm{by}\:\mathrm{step}\:\mathrm{or}\:\mathrm{by}\:\mathrm{showing}\:\mathrm{all}\:\mathrm{steps}\: \\ $$$$\mathrm{b}/\mathrm{c}\:\mathrm{it}\:\mathrm{is}\:\mathrm{my}\:\mathrm{assignment} \\ $$

Answered by MJS_new last updated on 17/Jan/21

the easiest way to prove is graphically.  here′s a different proof:  sin x =((e^(ix) −e^(−ix) )/(2i))∧cos x =((e^(ix) +e^(−ix) )/2)  let e^(ix) =p  sin^2  x +cos^2  x =(((p−(1/p))^2 )/((2i)^2 ))+(((p+(1/p))^2 )/2^2 )=  =((p^2 −2+(1/p^2 ))/(−4))+((p^2 +2+(1/p^2 ))/4)=(4/4)=1

$$\mathrm{the}\:\mathrm{easiest}\:\mathrm{way}\:\mathrm{to}\:\mathrm{prove}\:\mathrm{is}\:\mathrm{graphically}. \\ $$$$\mathrm{here}'\mathrm{s}\:\mathrm{a}\:\mathrm{different}\:\mathrm{proof}: \\ $$$$\mathrm{sin}\:{x}\:=\frac{\mathrm{e}^{\mathrm{i}{x}} −\mathrm{e}^{−\mathrm{i}{x}} }{\mathrm{2i}}\wedge\mathrm{cos}\:{x}\:=\frac{\mathrm{e}^{\mathrm{i}{x}} +\mathrm{e}^{−\mathrm{i}{x}} }{\mathrm{2}} \\ $$$$\mathrm{let}\:\mathrm{e}^{\mathrm{i}{x}} ={p} \\ $$$$\mathrm{sin}^{\mathrm{2}} \:{x}\:+\mathrm{cos}^{\mathrm{2}} \:{x}\:=\frac{\left({p}−\frac{\mathrm{1}}{{p}}\right)^{\mathrm{2}} }{\left(\mathrm{2i}\right)^{\mathrm{2}} }+\frac{\left({p}+\frac{\mathrm{1}}{{p}}\right)^{\mathrm{2}} }{\mathrm{2}^{\mathrm{2}} }= \\ $$$$=\frac{{p}^{\mathrm{2}} −\mathrm{2}+\frac{\mathrm{1}}{{p}^{\mathrm{2}} }}{−\mathrm{4}}+\frac{{p}^{\mathrm{2}} +\mathrm{2}+\frac{\mathrm{1}}{{p}^{\mathrm{2}} }}{\mathrm{4}}=\frac{\mathrm{4}}{\mathrm{4}}=\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com