Question Number 85718 by M±th+et£s last updated on 24/Mar/20 | ||
$$\int\frac{{sin}\left({x}\right)−{cos}\left(\mathrm{3}{x}\right)}{{sin}\left({x}\right)−{cos}\left(\mathrm{2}{x}\right)}{dx} \\ $$ | ||
Answered by MJS last updated on 24/Mar/20 | ||
$$\int\frac{\mathrm{sin}\:{x}\:−\mathrm{cos}\:\mathrm{3}{x}}{\mathrm{sin}\:{x}\:−\mathrm{cos}\:\mathrm{2}{x}}{dx}= \\ $$$$=\int\frac{\mathrm{4cos}\:{x}\:\mathrm{sin}^{\mathrm{2}} \:{x}\:−\mathrm{cos}\:{x}\:+\mathrm{sin}\:{x}}{−\mathrm{2cos}^{\mathrm{2}} \:{x}\:+\mathrm{sin}\:{x}\:+\mathrm{1}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{tan}\:\frac{{x}}{\mathrm{2}}\:\rightarrow\:{dx}=\frac{\mathrm{2}{dt}}{{t}^{\mathrm{2}} +\mathrm{1}}\right] \\ $$$$=−\mathrm{2}\int\frac{{t}^{\mathrm{6}} +\mathrm{2}{t}^{\mathrm{5}} −\mathrm{15}{t}^{\mathrm{4}} +\mathrm{4}{t}^{\mathrm{3}} +\mathrm{15}{t}^{\mathrm{2}} +\mathrm{2}{t}−\mathrm{1}}{{t}^{\mathrm{8}} −\mathrm{2}{t}^{\mathrm{7}} −\mathrm{4}{t}^{\mathrm{6}} −\mathrm{6}{t}^{\mathrm{5}} −\mathrm{10}{t}^{\mathrm{4}} −\mathrm{6}{t}^{\mathrm{3}} −\mathrm{4}{t}^{\mathrm{2}} −\mathrm{2}{t}+\mathrm{1}}{dt}= \\ $$$$=−\mathrm{2}\int\frac{...}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} \left({t}+\mathrm{1}\right)^{\mathrm{2}} \left({t}−\mathrm{2}−\sqrt{\mathrm{3}}\right)\left({t}−\mathrm{2}+\sqrt{\mathrm{3}}\right)}{dt}= \\ $$$$=\mathrm{8}\int\frac{{dt}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }+\int\frac{\mathrm{2}{t}}{{t}^{\mathrm{2}} +\mathrm{1}}{dt}−\mathrm{4}\int\frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{1}}+\frac{\mathrm{2}}{\mathrm{3}}\int\frac{{dt}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }−\mathrm{2}\int\frac{{dt}}{{t}+\mathrm{1}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{9}}\int\frac{{dt}}{{t}−\mathrm{2}−\sqrt{\mathrm{3}}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{9}}\int\frac{{dt}}{{t}−\mathrm{2}+\sqrt{\mathrm{3}}} \\ $$$$\mathrm{now}\:\mathrm{it}'\mathrm{s}\:\mathrm{easy} \\ $$ | ||
Commented by MJS last updated on 24/Mar/20 | ||
$$\mathrm{I}\:\mathrm{get} \\ $$$$\frac{\mathrm{2}\left(\mathrm{5}{t}^{\mathrm{2}} +\mathrm{6}{t}−\mathrm{1}\right)}{\mathrm{3}\left({t}^{\mathrm{2}} +\mathrm{1}\right)\left({t}+\mathrm{1}\right)}+\mathrm{ln}\:\frac{{t}^{\mathrm{2}} +\mathrm{1}}{\left({t}+\mathrm{1}\right)^{\mathrm{2}} }\:+\frac{\sqrt{\mathrm{3}}}{\mathrm{9}}\mathrm{ln}\:\frac{{t}−\mathrm{2}+\sqrt{\mathrm{3}}}{{t}−\mathrm{2}−\sqrt{\mathrm{3}}} \\ $$$$\mathrm{with}\:{t}=\mathrm{tan}\:\frac{{x}}{\mathrm{2}} \\ $$ | ||
Commented by M±th+et£s last updated on 24/Mar/20 | ||
$${thank}\:{you}\:{sir}\:.\:{god}\:{bless}\:{you} \\ $$ | ||