Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 77716 by aliesam last updated on 09/Jan/20

∫sin(x^4 ) dx

$$\int{sin}\left({x}^{\mathrm{4}} \right)\:{dx} \\ $$

Commented by MJS last updated on 09/Jan/20

this can be solved using the incomplete  gamma function. I′ll post it later

$$\mathrm{this}\:\mathrm{can}\:\mathrm{be}\:\mathrm{solved}\:\mathrm{using}\:\mathrm{the}\:\mathrm{incomplete} \\ $$$$\mathrm{gamma}\:\mathrm{function}.\:\mathrm{I}'\mathrm{ll}\:\mathrm{post}\:\mathrm{it}\:\mathrm{later} \\ $$

Commented by aliesam last updated on 09/Jan/20

thanks sir

$${thanks}\:{sir} \\ $$

Answered by MJS last updated on 09/Jan/20

∫sin x^4  dx=−(i/2)∫(e^(ix^4 ) −e^(−ix^4 ) )dx=       [t=x((−i))^(1/4)  =(x/2)((√(2+(√2)))−i(√(2−(√2)))) → dx=(dt/2)((√(2+(√2)))+i(√(2−(√2))))]  =(1/4)((√(2−(√2)))−i(√(2+(√2))))∫(e^(−t^4 ) +e^t^4  )dt  ∫e^(−t^4 ) dt=−((√2)/8)(1−i)Γ ((1/4), −t^4 )  ∫e^t^4  dt=−(1/4)Γ ((1/4), t^4 )  ...

$$\int\mathrm{sin}\:{x}^{\mathrm{4}} \:{dx}=−\frac{\mathrm{i}}{\mathrm{2}}\int\left(\mathrm{e}^{\mathrm{i}{x}^{\mathrm{4}} } −\mathrm{e}^{−\mathrm{i}{x}^{\mathrm{4}} } \right){dx}= \\ $$$$\:\:\:\:\:\left[{t}={x}\sqrt[{\mathrm{4}}]{−\mathrm{i}}\:=\frac{{x}}{\mathrm{2}}\left(\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}−\mathrm{i}\sqrt{\mathrm{2}−\sqrt{\mathrm{2}}}\right)\:\rightarrow\:{dx}=\frac{{dt}}{\mathrm{2}}\left(\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}+\mathrm{i}\sqrt{\mathrm{2}−\sqrt{\mathrm{2}}}\right)\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left(\sqrt{\mathrm{2}−\sqrt{\mathrm{2}}}−\mathrm{i}\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}\right)\int\left(\mathrm{e}^{−{t}^{\mathrm{4}} } +\mathrm{e}^{{t}^{\mathrm{4}} } \right){dt} \\ $$$$\int\mathrm{e}^{−{t}^{\mathrm{4}} } {dt}=−\frac{\sqrt{\mathrm{2}}}{\mathrm{8}}\left(\mathrm{1}−\mathrm{i}\right)\Gamma\:\left(\frac{\mathrm{1}}{\mathrm{4}},\:−{t}^{\mathrm{4}} \right) \\ $$$$\int\mathrm{e}^{{t}^{\mathrm{4}} } {dt}=−\frac{\mathrm{1}}{\mathrm{4}}\Gamma\:\left(\frac{\mathrm{1}}{\mathrm{4}},\:{t}^{\mathrm{4}} \right) \\ $$$$... \\ $$

Commented by aliesam last updated on 09/Jan/20

perfect sir thanks

$${perfect}\:{sir}\:{thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com