Question Number 161919 by talminator2856791 last updated on 24/Dec/21 | ||
$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\int_{−\infty} ^{\:\infty} \:\mathrm{sin}\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right){dx}\: \\ $$$$\: \\ $$ | ||
Answered by Lordose last updated on 24/Dec/21 | ||
$$ \\ $$$$\Omega\:=\:\int_{−\infty} ^{\:\infty} \mathrm{sin}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right)\mathrm{dx} \\ $$$$\Omega\:=\:\int_{−\infty} ^{\:\infty} \mathrm{sin}\left(\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{4}}\right)\mathrm{dx} \\ $$$$\Omega\:=\:\mathrm{cos}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)\int_{−\infty} ^{\:\infty} \mathrm{sin}\left(\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \right)\mathrm{dx}\:+\:\mathrm{sin}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)\int_{−\infty} ^{\:\infty} \mathrm{cos}\left(\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \right)\mathrm{dx} \\ $$$$\Omega\:\overset{\mathrm{x}=\mathrm{x}+\frac{\mathrm{1}}{\mathrm{2}}} {=}\mathrm{cos}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)\int_{−\infty} ^{\:\infty} \mathrm{sin}\left(\mathrm{x}^{\mathrm{2}} \right)\mathrm{dx}\:+\:\mathrm{sin}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)\int_{−\infty} ^{\:\infty} \mathrm{cos}\left(\mathrm{x}^{\mathrm{2}} \right)\mathrm{dx} \\ $$$$\Omega\:=\:\mathrm{2cos}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)\int_{\mathrm{0}} ^{\:\infty} \mathrm{sin}\left(\mathrm{x}^{\mathrm{2}} \right)\mathrm{dx}\:+\:\mathrm{2sin}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)\int_{\mathrm{0}} ^{\:\infty} \mathrm{cos}\left(\mathrm{x}^{\mathrm{2}} \right)\mathrm{dx} \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \boldsymbol{\mathrm{sin}}\left(\boldsymbol{\mathrm{x}}^{\mathrm{2}} \right)\boldsymbol{\mathrm{dx}}\:=\:\int_{\mathrm{0}} ^{\:\infty} \boldsymbol{\mathrm{cos}}\left(\boldsymbol{\mathrm{x}}^{\mathrm{2}} \right)\boldsymbol{\mathrm{dx}}\:=\:\sqrt{\frac{\boldsymbol{\pi}}{\mathrm{8}}} \\ $$$$\Omega\:=\:\mathrm{2cos}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)\centerdot\sqrt{\frac{\boldsymbol{\pi}}{\mathrm{8}}}\:+\:\mathrm{2sin}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)\sqrt{\frac{\boldsymbol{\pi}}{\mathrm{8}}} \\ $$$$\Omega\:=\:\sqrt{\frac{\boldsymbol{\pi}}{\mathrm{2}}}\left(\mathrm{cos}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)+\mathrm{sin}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)\right) \\ $$$$ \\ $$ | ||