Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 183976 by cortano1 last updated on 01/Jan/23

  ∫ ((sin x−(√(1+sin x)))/(cos x−(√(1+cos x)))) dx =?

$$\:\:\int\:\frac{\mathrm{sin}\:{x}−\sqrt{\mathrm{1}+\mathrm{sin}\:{x}}}{\mathrm{cos}\:{x}−\sqrt{\mathrm{1}+\mathrm{cos}\:{x}}}\:{dx}\:=? \\ $$

Answered by MJS_new last updated on 01/Jan/23

t=((1+sin (x/2))/(cos (x/2)))⇔x=2arctan ((t^2 −1)/(2t)) → dx=((4dt)/(t^2 −1))  ⇒  ∫((sin x −(√(1+sin x)))/(cos x −(√(1+cos x))))dx=  =4∫((t^4 −2t^3 +6t−1)/((t^2 +1)(t^2 +(√2)(1+(√5))t+1)(t^2 +(√2)(1−(√5))t+1)))dt  now do the decomposition etc. for yourself  because I′m too lazy again.

$${t}=\frac{\mathrm{1}+\mathrm{sin}\:\frac{{x}}{\mathrm{2}}}{\mathrm{cos}\:\frac{{x}}{\mathrm{2}}}\Leftrightarrow{x}=\mathrm{2arctan}\:\frac{{t}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}{t}}\:\rightarrow\:{dx}=\frac{\mathrm{4}{dt}}{{t}^{\mathrm{2}} −\mathrm{1}} \\ $$$$\Rightarrow \\ $$$$\int\frac{\mathrm{sin}\:{x}\:−\sqrt{\mathrm{1}+\mathrm{sin}\:{x}}}{\mathrm{cos}\:{x}\:−\sqrt{\mathrm{1}+\mathrm{cos}\:{x}}}{dx}= \\ $$$$=\mathrm{4}\int\frac{{t}^{\mathrm{4}} −\mathrm{2}{t}^{\mathrm{3}} +\mathrm{6}{t}−\mathrm{1}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)\left({t}^{\mathrm{2}} +\sqrt{\mathrm{2}}\left(\mathrm{1}+\sqrt{\mathrm{5}}\right){t}+\mathrm{1}\right)\left({t}^{\mathrm{2}} +\sqrt{\mathrm{2}}\left(\mathrm{1}−\sqrt{\mathrm{5}}\right){t}+\mathrm{1}\right)}{dt} \\ $$$$\mathrm{now}\:\mathrm{do}\:\mathrm{the}\:\mathrm{decomposition}\:\mathrm{etc}.\:\mathrm{for}\:\mathrm{yourself} \\ $$$$\mathrm{because}\:\mathrm{I}'\mathrm{m}\:\mathrm{too}\:\mathrm{lazy}\:\mathrm{again}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com