Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 211075 by ajfour last updated on 27/Aug/24

sin (θ+φ)=θ  sin θ=φ  find θ and φ.

$$\mathrm{sin}\:\left(\theta+\phi\right)=\theta \\ $$$$\mathrm{sin}\:\theta=\phi \\ $$$${find}\:\theta\:{and}\:\phi. \\ $$

Answered by Ghisom last updated on 27/Aug/24

we can only approximate  φ=sin θ  sin (θ+sin θ) =θ  1. θ=φ=0  2. θ≈±.973696169714∧φ≈±.826969516935

$$\mathrm{we}\:\mathrm{can}\:\mathrm{only}\:\mathrm{approximate} \\ $$$$\phi=\mathrm{sin}\:\theta \\ $$$$\mathrm{sin}\:\left(\theta+\mathrm{sin}\:\theta\right)\:=\theta \\ $$$$\mathrm{1}.\:\theta=\phi=\mathrm{0} \\ $$$$\mathrm{2}.\:\theta\approx\pm.\mathrm{973696169714}\wedge\phi\approx\pm.\mathrm{826969516935} \\ $$

Answered by ajfour last updated on 27/Aug/24

cos (θ+φ)=(√(1−θ^2 ))  tan (θ+φ)=(θ/( (√(1−θ^2 ))))  ((tan θ+tan φ)/(1−tan θtan φ))=(θ/( (√(1−θ^2 ))))  tan φ=((θ−(√(1−θ^2 ))tan θ)/( (√(1−θ^2 ))+θtan θ))  ...yes so b it

$$\mathrm{cos}\:\left(\theta+\phi\right)=\sqrt{\mathrm{1}−\theta^{\mathrm{2}} } \\ $$$$\mathrm{tan}\:\left(\theta+\phi\right)=\frac{\theta}{\:\sqrt{\mathrm{1}−\theta^{\mathrm{2}} }} \\ $$$$\frac{\mathrm{tan}\:\theta+\mathrm{tan}\:\phi}{\mathrm{1}−\mathrm{tan}\:\theta\mathrm{tan}\:\phi}=\frac{\theta}{\:\sqrt{\mathrm{1}−\theta^{\mathrm{2}} }} \\ $$$$\mathrm{tan}\:\phi=\frac{\theta−\sqrt{\mathrm{1}−\theta^{\mathrm{2}} }\mathrm{tan}\:\theta}{\:\sqrt{\mathrm{1}−\theta^{\mathrm{2}} }+\theta\mathrm{tan}\:\theta} \\ $$$$...{yes}\:{so}\:{b}\:{it} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com