Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 188475 by cortano12 last updated on 02/Mar/23

  sin ((π/2)(4x+(√x) ))cos (π(x+7(√x)))=1   x=?

$$\:\:\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}\left(\mathrm{4x}+\sqrt{\mathrm{x}}\:\right)\right)\mathrm{cos}\:\left(\pi\left(\mathrm{x}+\mathrm{7}\sqrt{\mathrm{x}}\right)\right)=\mathrm{1} \\ $$$$\:\mathrm{x}=? \\ $$

Answered by Frix last updated on 02/Mar/23

sin α sin β =1  ⇔  ((sin (α−β) +sin (α+β))/2)=1  ⇒  sin (α−β) =1∧sin (α+β) =1  ⇒  α−β=(((4m+1)π)/2)∧α+β=(((4n+1)π)/2)∧m, n∈Z     { (((π/2)(4x+(√x))−π(x+7(√x))=(((4m+1)π)/2))),(((π/2)(4x+(√x))+π(x+7(√x))=(((4n+1)π)/2))) :}  ⇔   { ((m=(x/2)−((13(√x))/4)−(1/4))),((n=((3x)/2)+((15(√x))/4)−(1/4))) :}  ⇒ x=h^2 ; h∈N  By trying I got h=4k+1; k∈Z  ⇒  x=(4k+1)^2 ; k∈Z

$$\mathrm{sin}\:\alpha\:\mathrm{sin}\:\beta\:=\mathrm{1} \\ $$$$\Leftrightarrow \\ $$$$\frac{\mathrm{sin}\:\left(\alpha−\beta\right)\:+\mathrm{sin}\:\left(\alpha+\beta\right)}{\mathrm{2}}=\mathrm{1} \\ $$$$\Rightarrow \\ $$$$\mathrm{sin}\:\left(\alpha−\beta\right)\:=\mathrm{1}\wedge\mathrm{sin}\:\left(\alpha+\beta\right)\:=\mathrm{1} \\ $$$$\Rightarrow \\ $$$$\alpha−\beta=\frac{\left(\mathrm{4}{m}+\mathrm{1}\right)\pi}{\mathrm{2}}\wedge\alpha+\beta=\frac{\left(\mathrm{4}{n}+\mathrm{1}\right)\pi}{\mathrm{2}}\wedge{m},\:{n}\in\mathbb{Z} \\ $$$$ \\ $$$$\begin{cases}{\frac{\pi}{\mathrm{2}}\left(\mathrm{4}{x}+\sqrt{{x}}\right)−\pi\left({x}+\mathrm{7}\sqrt{{x}}\right)=\frac{\left(\mathrm{4}{m}+\mathrm{1}\right)\pi}{\mathrm{2}}}\\{\frac{\pi}{\mathrm{2}}\left(\mathrm{4}{x}+\sqrt{{x}}\right)+\pi\left({x}+\mathrm{7}\sqrt{{x}}\right)=\frac{\left(\mathrm{4}{n}+\mathrm{1}\right)\pi}{\mathrm{2}}}\end{cases} \\ $$$$\Leftrightarrow \\ $$$$\begin{cases}{{m}=\frac{{x}}{\mathrm{2}}−\frac{\mathrm{13}\sqrt{{x}}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{4}}}\\{{n}=\frac{\mathrm{3}{x}}{\mathrm{2}}+\frac{\mathrm{15}\sqrt{{x}}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{4}}}\end{cases} \\ $$$$\Rightarrow\:{x}={h}^{\mathrm{2}} ;\:{h}\in\mathbb{N} \\ $$$$\mathrm{By}\:\mathrm{trying}\:\mathrm{I}\:\mathrm{got}\:{h}=\mathrm{4}{k}+\mathrm{1};\:{k}\in\mathbb{Z} \\ $$$$\Rightarrow \\ $$$${x}=\left(\mathrm{4}{k}+\mathrm{1}\right)^{\mathrm{2}} ;\:{k}\in\mathbb{Z} \\ $$

Commented by cortano12 last updated on 02/Mar/23

 sin α .cos β =((sin (α+β)+sin (α−β))/2)

$$\:\mathrm{sin}\:\alpha\:.\mathrm{cos}\:\beta\:=\frac{\mathrm{sin}\:\left(\alpha+\beta\right)+\mathrm{sin}\:\left(\alpha−\beta\right)}{\mathrm{2}} \\ $$

Commented by Frix last updated on 02/Mar/23

Yes, that is what I used.

$$\mathrm{Yes},\:\mathrm{that}\:\mathrm{is}\:\mathrm{what}\:\mathrm{I}\:\mathrm{used}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com