Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 120461 by Khalmohmmad last updated on 31/Oct/20

∫sin(lnx)dx

$$\int\mathrm{sin}\left(\mathrm{ln}{x}\right){dx} \\ $$

Answered by Dwaipayan Shikari last updated on 31/Oct/20

∫sin(logx)dx  =(∫e^t sin(t)dt )→I        logx=t  =−e^t cos(t)+∫e^t cost  =−e^t cos(t)+e^t sint−(∫e^t sintdt)→I  2I=e^t (sint−cost)  I=e^t (((sint)/2)−((cost)/2))  I=(x/2)(sin(logx)−cos(logx))+C  =(x/( (√2)))(sin(logx−(π/4)))+C

$$\int{sin}\left({logx}\right){dx} \\ $$$$=\left(\int{e}^{{t}} {sin}\left({t}\right){dt}\:\right)\rightarrow{I}\:\:\:\:\:\:\:\:{logx}={t} \\ $$$$=−{e}^{{t}} {cos}\left({t}\right)+\int{e}^{{t}} {cost} \\ $$$$=−{e}^{{t}} {cos}\left({t}\right)+{e}^{{t}} {sint}−\left(\int{e}^{{t}} {sintdt}\right)\rightarrow{I} \\ $$$$\mathrm{2}{I}={e}^{{t}} \left({sint}−{cost}\right) \\ $$$${I}={e}^{{t}} \left(\frac{{sint}}{\mathrm{2}}−\frac{{cost}}{\mathrm{2}}\right) \\ $$$${I}=\frac{{x}}{\mathrm{2}}\left({sin}\left({logx}\right)−{cos}\left({logx}\right)\right)+{C} \\ $$$$=\frac{{x}}{\:\sqrt{\mathrm{2}}}\left({sin}\left({logx}−\frac{\pi}{\mathrm{4}}\right)\right)+{C} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com