Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 8993 by tawakalitu last updated on 11/Nov/16

∫sin(e^(2x) ) dx

$$\int\mathrm{sin}\left(\mathrm{e}^{\mathrm{2x}} \right)\:\mathrm{dx} \\ $$

Commented by FilupSmith last updated on 12/Nov/16

u=e^(2x)  ⇒ du=(1/2)e^(2x) dx  ∫sin(e^(2x) )dx=(1/2)∫ ((sin(u))/u)du  =((Si(e^(2x) ))/2)+c  Si(x)  is sine integral  Si(z)≡∫_0 ^( z) ((sin(x))/x)dx

$${u}={e}^{\mathrm{2}{x}} \:\Rightarrow\:{du}=\frac{\mathrm{1}}{\mathrm{2}}{e}^{\mathrm{2}{x}} {dx} \\ $$$$\int\mathrm{sin}\left({e}^{\mathrm{2}{x}} \right){dx}=\frac{\mathrm{1}}{\mathrm{2}}\int\:\frac{\mathrm{sin}\left({u}\right)}{{u}}{du} \\ $$$$=\frac{\mathrm{Si}\left({e}^{\mathrm{2}{x}} \right)}{\mathrm{2}}+{c} \\ $$$$\mathrm{Si}\left({x}\right)\:\:{is}\:{sine}\:{integral} \\ $$$$\mathrm{Si}\left({z}\right)\equiv\int_{\mathrm{0}} ^{\:{z}} \frac{\mathrm{sin}\left({x}\right)}{{x}}{dx} \\ $$

Commented by tawakalitu last updated on 12/Nov/16

Thank you sir.

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com