Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 97041 by bemath last updated on 06/Jun/20

∫ sin^8 (x) cos^8 (x) dx = ?

$$\int\:\mathrm{sin}\:^{\mathrm{8}} \left({x}\right)\:\mathrm{cos}\:^{\mathrm{8}} \left({x}\right)\:{dx}\:=\:? \\ $$

Answered by john santu last updated on 06/Jun/20

⇒sin^8 x.cos^8 x = ((sin^8 (2x))/2^8 )  sin (2x) = ((e^(2ix) −e^(−2ix) )/(2i))  sin^8 x.cos^8 x = (((e^(2ix) −e^(−2ix) )^8 )/2^(16) )  I = (1/2^(15) ) ∫ (cos 16x+8cos 12x +56 cos 4x +35) dx  I= (1/2^(15) ) (((sin 16x)/(16)) + ((8sin 12x)/(12))+((56sin 4x)/4)+35x) + c

$$\Rightarrow\mathrm{sin}\:^{\mathrm{8}} {x}.\mathrm{cos}\:^{\mathrm{8}} {x}\:=\:\frac{\mathrm{sin}\:^{\mathrm{8}} \left(\mathrm{2}{x}\right)}{\mathrm{2}^{\mathrm{8}} } \\ $$$$\mathrm{sin}\:\left(\mathrm{2}{x}\right)\:=\:\frac{{e}^{\mathrm{2}{ix}} −{e}^{−\mathrm{2}{ix}} }{\mathrm{2}{i}} \\ $$$$\mathrm{sin}\:^{\mathrm{8}} {x}.\mathrm{cos}\:^{\mathrm{8}} {x}\:=\:\frac{\left({e}^{\mathrm{2}{ix}} −{e}^{−\mathrm{2}{ix}} \right)^{\mathrm{8}} }{\mathrm{2}^{\mathrm{16}} } \\ $$$$\mathrm{I}\:=\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{15}} }\:\int\:\left(\mathrm{cos}\:\mathrm{16}{x}+\mathrm{8cos}\:\mathrm{12}{x}\:+\mathrm{56}\:\mathrm{cos}\:\mathrm{4}{x}\:+\mathrm{35}\right)\:{dx} \\ $$$$\mathrm{I}=\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{15}} }\:\left(\frac{\mathrm{sin}\:\mathrm{16}{x}}{\mathrm{16}}\:+\:\frac{\mathrm{8sin}\:\mathrm{12}{x}}{\mathrm{12}}+\frac{\mathrm{56sin}\:\mathrm{4}{x}}{\mathrm{4}}+\mathrm{35}{x}\right)\:+\:{c}\: \\ $$$$ \\ $$

Answered by Sourav mridha last updated on 06/Jun/20

let sinx=m  ∫(1−m^2 )^7 m^8 dm  =∫[Σ_(r=0) ^7 C_r ^7 (1)^(7−r) .(−m^2 )^r .].m^8 dm  =Σ_(r=0) ^7 (−1)^r C_r ^7 [∫m^(2r+8) dm]  =Σ_(r=0) ^7 (−1)^r C_r ^7 (((sin(x))^(2r+9) )/(2r+9)).+k

$$\boldsymbol{{let}}\:\boldsymbol{{sinx}}=\boldsymbol{{m}} \\ $$$$\int\left(\mathrm{1}−\boldsymbol{{m}}^{\mathrm{2}} \right)^{\mathrm{7}} \boldsymbol{{m}}^{\mathrm{8}} \boldsymbol{{dm}} \\ $$$$=\int\left[\underset{{r}=\mathrm{0}} {\overset{\mathrm{7}} {\sum}}\overset{\mathrm{7}} {\boldsymbol{{C}}}_{\boldsymbol{{r}}} \left(\mathrm{1}\right)^{\mathrm{7}−\boldsymbol{{r}}} .\left(−\boldsymbol{{m}}^{\mathrm{2}} \right)^{\boldsymbol{{r}}} .\right].\boldsymbol{{m}}^{\mathrm{8}} \boldsymbol{{dm}} \\ $$$$=\underset{\boldsymbol{{r}}=\mathrm{0}} {\overset{\mathrm{7}} {\sum}}\left(−\mathrm{1}\right)^{\boldsymbol{{r}}} \overset{\mathrm{7}} {\boldsymbol{{C}}}_{\boldsymbol{{r}}} \left[\int\boldsymbol{{m}}^{\mathrm{2}\boldsymbol{{r}}+\mathrm{8}} \boldsymbol{{dm}}\right] \\ $$$$=\underset{\boldsymbol{{r}}=\mathrm{0}} {\overset{\mathrm{7}} {\sum}}\left(−\mathrm{1}\right)^{\boldsymbol{{r}}} \overset{\mathrm{7}} {\boldsymbol{{C}}}_{\boldsymbol{{r}}} \frac{\left(\boldsymbol{{sin}}\left(\boldsymbol{{x}}\right)\right)^{\mathrm{2}\boldsymbol{{r}}+\mathrm{9}} }{\mathrm{2}\boldsymbol{{r}}+\mathrm{9}}.+\boldsymbol{{k}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com