Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 63703 by kaivan.ahmadi last updated on 07/Jul/19

sin^3 x+cos^3 x=1−(1/2)sin2x  :x∈[0,2π].  find  x

$${sin}^{\mathrm{3}} {x}+{cos}^{\mathrm{3}} {x}=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}{sin}\mathrm{2}{x}\:\::{x}\in\left[\mathrm{0},\mathrm{2}\pi\right]. \\ $$$${find}\:\:{x} \\ $$

Commented by Prithwish sen last updated on 08/Jul/19

(sinx + cosx ) (1−(1/2)sin2x) −(1−(1/2)sin2x)=0  ⇒sin2x = 2 which is impossible  and sin((π/4) + x) = sin(π/4) or  sin((3π)/4)

$$\left(\mathrm{sinx}\:+\:\mathrm{cosx}\:\right)\:\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin2x}\right)\:−\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin2x}\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{sin2x}\:=\:\mathrm{2}\:\mathrm{which}\:\mathrm{is}\:\mathrm{impossible} \\ $$$$\mathrm{and}\:\mathrm{sin}\left(\frac{\pi}{\mathrm{4}}\:+\:\mathrm{x}\right)\:=\:\mathrm{sin}\frac{\pi}{\mathrm{4}}\:\mathrm{or}\:\:\mathrm{sin}\frac{\mathrm{3}\pi}{\mathrm{4}} \\ $$

Commented by kaivan.ahmadi last updated on 08/Jul/19

(sinx+cosx−1)(1−(1/2)sin2x)=0⇒  sinx+cosx=1⇒  x=0,(π/2),2π

$$\left({sinx}+{cosx}−\mathrm{1}\right)\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}{sin}\mathrm{2}{x}\right)=\mathrm{0}\Rightarrow \\ $$$${sinx}+{cosx}=\mathrm{1}\Rightarrow \\ $$$${x}=\mathrm{0},\frac{\pi}{\mathrm{2}},\mathrm{2}\pi \\ $$

Answered by MJS last updated on 07/Jul/19

x=2arctan t  −((2t(t−1)(t^4 +2t^3 +2t^2 −2t+1))/((t^2 +1)^3 ))=0  t_1 =0  t_2 =1  no other real solutions  ⇒ x=0∨x=(π/2)

$${x}=\mathrm{2arctan}\:{t} \\ $$$$−\frac{\mathrm{2}{t}\left({t}−\mathrm{1}\right)\left({t}^{\mathrm{4}} +\mathrm{2}{t}^{\mathrm{3}} +\mathrm{2}{t}^{\mathrm{2}} −\mathrm{2}{t}+\mathrm{1}\right)}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} }=\mathrm{0} \\ $$$${t}_{\mathrm{1}} =\mathrm{0} \\ $$$${t}_{\mathrm{2}} =\mathrm{1} \\ $$$$\mathrm{no}\:\mathrm{other}\:\mathrm{real}\:\mathrm{solutions} \\ $$$$\Rightarrow\:{x}=\mathrm{0}\vee{x}=\frac{\pi}{\mathrm{2}} \\ $$

Commented by kaivan.ahmadi last updated on 08/Jul/19

1. ((5π)/2)  2. ((7π)/2)  3. 2π  4. 3π  excuseme sir find sum of answers

$$\mathrm{1}.\:\frac{\mathrm{5}\pi}{\mathrm{2}} \\ $$$$\mathrm{2}.\:\frac{\mathrm{7}\pi}{\mathrm{2}} \\ $$$$\mathrm{3}.\:\mathrm{2}\pi \\ $$$$\mathrm{4}.\:\mathrm{3}\pi \\ $$$${excuseme}\:{sir}\:{find}\:{sum}\:{of}\:{answers} \\ $$

Commented by kaivan.ahmadi last updated on 08/Jul/19

x=2π is an answer

$${x}=\mathrm{2}\pi\:{is}\:{an}\:{answer} \\ $$

Commented by MJS last updated on 08/Jul/19

generally x=2nπ∨x=(π/2)+2nπ; n∈Z

$$\mathrm{generally}\:{x}=\mathrm{2}{n}\pi\vee{x}=\frac{\pi}{\mathrm{2}}+\mathrm{2}{n}\pi;\:{n}\in\mathbb{Z} \\ $$

Commented by MJS last updated on 08/Jul/19

((7π)/2) and 3π are wrong

$$\frac{\mathrm{7}\pi}{\mathrm{2}}\:\mathrm{and}\:\mathrm{3}\pi\:\mathrm{are}\:\mathrm{wrong} \\ $$

Commented by kaivan.ahmadi last updated on 08/Jul/19

sir can you explain how do you  change the variable?

$${sir}\:{can}\:{you}\:{explain}\:{how}\:{do}\:{you} \\ $$$${change}\:{the}\:{variable}? \\ $$

Commented by MJS last updated on 08/Jul/19

the substitution x=2arctan t leads to  sin x =((2t)/(t^2 +1))  cos x =−((t^2 −1)/(t^2 +1))

$$\mathrm{the}\:\mathrm{substitution}\:{x}=\mathrm{2arctan}\:{t}\:\mathrm{leads}\:\mathrm{to} \\ $$$$\mathrm{sin}\:{x}\:=\frac{\mathrm{2}{t}}{{t}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\mathrm{cos}\:{x}\:=−\frac{{t}^{\mathrm{2}} −\mathrm{1}}{{t}^{\mathrm{2}} +\mathrm{1}} \\ $$

Commented by kaivan.ahmadi last updated on 08/Jul/19

thanks sir

$${thanks}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com