Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 167223 by cortano1 last updated on 10/Mar/22

  ∫ sin^3 (3x) cos^4 (5x) dx=?

$$\:\:\int\:\mathrm{sin}\:^{\mathrm{3}} \left(\mathrm{3x}\right)\:\mathrm{cos}\:^{\mathrm{4}} \left(\mathrm{5x}\right)\:\mathrm{dx}=? \\ $$

Commented by greogoury55 last updated on 10/Mar/22

 sin^3 (3x)=((3sin (3x)−sin (9x))/4)   cos^4 (5x)=((3+4cos (10x)+cos (20x))/8)   let sin (nx)=s_n  & cos (mx)=c_m    then s_n ×c_m =((s_(n+m) +s_(n−m) )/2)

$$\:\mathrm{sin}\:^{\mathrm{3}} \left(\mathrm{3}{x}\right)=\frac{\mathrm{3sin}\:\left(\mathrm{3}{x}\right)−\mathrm{sin}\:\left(\mathrm{9}{x}\right)}{\mathrm{4}} \\ $$$$\:\mathrm{cos}\:^{\mathrm{4}} \left(\mathrm{5}{x}\right)=\frac{\mathrm{3}+\mathrm{4cos}\:\left(\mathrm{10}{x}\right)+\mathrm{cos}\:\left(\mathrm{20}{x}\right)}{\mathrm{8}} \\ $$$$\:{let}\:\mathrm{sin}\:\left({nx}\right)={s}_{{n}} \:\&\:\mathrm{cos}\:\left({mx}\right)={c}_{{m}} \\ $$$$\:{then}\:{s}_{{n}} ×{c}_{{m}} =\frac{{s}_{{n}+{m}} +{s}_{{n}−{m}} }{\mathrm{2}} \\ $$

Commented by MJS_new last updated on 10/Mar/22

sin^3  3x cos^4  5x =       [sin x =s∧cos x =c]  =−c^4 (c^2 −1)(4c^2 −1)^3 (16c^4 −20c^2 +5)^4 s  we can use t=cos x and get  ∫t^4 (t^2 −1)(4t^2 −1)^3 (16t^4 −20t^2 +5)^4 dt  which has to be expanded...

$$\mathrm{sin}^{\mathrm{3}} \:\mathrm{3}{x}\:\mathrm{cos}^{\mathrm{4}} \:\mathrm{5}{x}\:= \\ $$$$\:\:\:\:\:\left[\mathrm{sin}\:{x}\:={s}\wedge\mathrm{cos}\:{x}\:={c}\right] \\ $$$$=−{c}^{\mathrm{4}} \left({c}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{4}{c}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{3}} \left(\mathrm{16}{c}^{\mathrm{4}} −\mathrm{20}{c}^{\mathrm{2}} +\mathrm{5}\right)^{\mathrm{4}} {s} \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{use}\:{t}=\mathrm{cos}\:{x}\:\mathrm{and}\:\mathrm{get} \\ $$$$\int{t}^{\mathrm{4}} \left({t}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{4}{t}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{3}} \left(\mathrm{16}{t}^{\mathrm{4}} −\mathrm{20}{t}^{\mathrm{2}} +\mathrm{5}\right)^{\mathrm{4}} {dt} \\ $$$$\mathrm{which}\:\mathrm{has}\:\mathrm{to}\:\mathrm{be}\:\mathrm{expanded}... \\ $$

Commented by cortano1 last updated on 10/Mar/22

Terms of Service

Privacy Policy

Contact: info@tinkutara.com