Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 196037 by cortano12 last updated on 16/Aug/23

   ∫ ((sin 2x)/(sin^3 x+cos^3 x)) dx =?

$$\:\:\:\int\:\frac{\mathrm{sin}\:\mathrm{2x}}{\mathrm{sin}\:^{\mathrm{3}} \mathrm{x}+\mathrm{cos}\:^{\mathrm{3}} \mathrm{x}}\:\mathrm{dx}\:=? \\ $$

Answered by Frix last updated on 16/Aug/23

Use t=sin (x−(π/4)) ⇒ dx=(dt/( (√(1−t^2 )))) to get  (√2)∫((2t^2 −1)/((t^2 −1)(2t^2 +1)))dt=...  =((√2)/6)ln ∣((t−1)/(t+1))∣ +((4tan^(−1)  (√2)t)/3)  ...

$$\mathrm{Use}\:{t}=\mathrm{sin}\:\left({x}−\frac{\pi}{\mathrm{4}}\right)\:\Rightarrow\:{dx}=\frac{{dt}}{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}\:\mathrm{to}\:\mathrm{get} \\ $$$$\sqrt{\mathrm{2}}\int\frac{\mathrm{2}{t}^{\mathrm{2}} −\mathrm{1}}{\left({t}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{2}{t}^{\mathrm{2}} +\mathrm{1}\right)}{dt}=... \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{6}}\mathrm{ln}\:\mid\frac{{t}−\mathrm{1}}{{t}+\mathrm{1}}\mid\:+\frac{\mathrm{4tan}^{−\mathrm{1}} \:\sqrt{\mathrm{2}}{t}}{\mathrm{3}} \\ $$$$... \\ $$

Answered by dimentri last updated on 17/Aug/23

Terms of Service

Privacy Policy

Contact: info@tinkutara.com